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Preface

We are surrounded by numbers. Etched on credit cards or engraved on
coins, printed on pay checks or aligned on computerized spread
sheets, numbers rule our lives. Indeed, they lie at the heart of our

technology. Without numbers, we could not send rockets roaming the solar sys-
tem, nor could we build bridges, exchange goods, or pay our bills. In some sense,
then, numbers are cultural inventions only comparable in importance to agricul-
ture or to the wheel. But they might have even deeper roots. Thousands of years
before Christ, Babylonian scientists used clever numerical notations to compute
astronomical tables of amazing accuracy. Tens of thousands of years prior to
them, Neolithic men recorded the first written numerals by engraving bones or
by painting dots on cave walls. And as I shall try to convince you later on, millions
of years earlier still, long before the dawn of humankind, animals of all species
were already registering numbers and entering them into simple mental compu-
tations. Might numbers, then be almost as old as life itself? Might they be
engraved in the very architecture of our brains? Do we all possess a "number
sense," a special intuition that helps us make sense of numbers and mathematics?

Fifteen years ago, as I was training to become a mathematician, I became fas-
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cinated by the abstract objects I was taught to manipulate, and above all, by the
simplest of them—numbers. Where did they come from? How was it possible
for my brain to understand them? Why did it seem so difficult for most people to
master them? Historians of science and philosophers of mathematics had provid-
ed some tentative answers, but to a scientifically oriented mind their speculative
and contingent character was unsatisfactory. Furthermore, scores of intriguing
facts about numbers and mathematics were left unanswered in the books I knew
of. Why did all languages have at least some number names? Why did everybody
seem to find multiplications by seven, eight, or nine particularly hard to learn?
Why couldn't I seem to recognize more than four objects at a glance? Why were
there ten boys for one girl in the high-level mathematics classes I was attending?
What tricks allowed lightning calculators to multiply two three-digit numbers in
a few seconds?

As I learned increasingly more about psychology, neurophysiology, and com-
puter science, it became obvious that the answers had to be looked for, not in his-
tory books, but in the very structure of our brains—the organ that enables us to
create mathematics. It was an exciting time for a mathematician to turn to cogni-
tive neuroscience. New experimental techniques and amazing results seemed to
appear every month. Some revealed that animals could do simple arithmetic.
Others asked whether babies had any notion of 1 plus 1. Functional imaging
tools were also becoming available that could visualize the active circuits of the
human brain as it calculates and solves arithmetical problems. Suddenly, the psy-
chological and cerebral bases of our number sense were open to experimenta-
tion. A new field of science was emerging: mathematical cognition, or the
scientific inquiry into how the human brain gives rise to mathematics. I was
lucky enough to become an active participant in this quest. This book provides a
first glance at this new field of research that my colleagues in Paris and several
research teams throughout the world are still busy developing.

I am indebted to many people for helping me complete the transition from
mathematics to neuropsychology. First and foremost, my research program on
arithmetic and the brain could never have developed without the generous assis-
tance of three outstanding teachers, colleagues, and friends who deserve very
special thanks: Jean-Pierre Changeux in neurobiology, Laurent Cohen in neu-
ropsychology, and Jacques Mehler in cognitive psychology. Their support, advice,
and often direct contribution to the work described here have been of invaluable
help.

Through the years, I have also benefited from the advice of many other emi-
nent scientists. Mike Posner, Don Tucker, Michael Murias, Denis Le Bihan, Andre
Syrota, and Bernard Mazoyer shared with me their in-depth knowledge of brain
imaging. Emmanuel Dupoux, Anne Christophe, and Christophe Pallier advised
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me in psycholinguistics. I am also grateful for ground-shaking debates with

Rochel Gelman and Randy Gallistel and for judicious remarks by Karen Wynn,

Sue Carey, and Josiane Bertoncini on child development.
The late professor Jean-Louis Signoret had introduced me to the fascinating

domain of neuropsychology. Subsequently, numerous discussions with Alfonso

Caramazza, Michael McCloskey, Brian Butterworth, and Xavier Seron greatly
enhanced my understanding of this discipline. Xavier Jeannin and Michel Dutat,
finally, assisted me in programming my experiments.

I also gratefully acknowledge the crucial contribution of several students to
my research: Rokny Akhavein, Serge Bossini, Florence Chochon, Pascal Giraux,

Markus Kiefer, Etienne Koechlin, Lionel Naccache, and Gerard Rozsavolgyi.

The preparation of this book greatly benefited from the close scrutiny of
Brian Butterworth, Robbie Case, Markus Giaquinto, and Susana Franck for the

English edition, and of Jean-Pierre Changeux, Laurent Cohen, and Ghislaine
Dehaene-Lambertz for the French edition. Warm thanks go also to Joan Bossert,
my editor at Oxford University Press, John Brockman, my agent, and Odile Jacob,
my French editor. Their trust and support was very precious.

I would also like to thank the publishers and authors who kindly granted me

the permission to reproduce the figures and quotes used in this book. Special

thanks go to Gianfranco Denes for drawing my attention to the remarkable sec-
tion of Ionesco's Lesson that is cited in Chapter 8.

Last but not least, a word of thanks cannot suffice to express my feelings for
my family, Ghislaine, Oliver, David, and Guillaume, who patiently supported me

during the long months spent exploring and writing about the universe of num-
bers. This book is dedicated to them.

S. D.
Piriac, France

August 1996
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Introduction
Any poet, even the most allergic to mathematics, has to count

up to twelve in order to compose an alexandrine.
Raymond Queneau

A
s I first sat down to write this book, I was faced with a ridiculous problem
of arithmetic: If this book is to have 250 pages and nine main chapters,
how many pages will each chapter have? After thinking hard, I came to

the conclusion that each should have slightly fewer than 30 pages. This took me
about five seconds, not bad for a human, yet an eternity compared to the speed of
any electronic calculator. Not only did my calculator respond instantaneously,
but the result it gave was accurate to the tenth decimal: 27.7777777778!

Why is our capacity for mental calculation so inferior to that of computers?
And how do we reach excellent approximations such as "slightly fewer than 30"
without resorting to an exact calculation, something that is beyond the best of
electronic calculators? The resolution of these nagging questions, which is the
subject matter of this book, will confront us with even more challenging riddles:

3

• Why is it that after so many years of training, the majority of us still do not
know for sure whether 7 times 8 is 54 or 64 ... or is it 56?

• Why is our mathematical knowledge so vulnerable that a small cerebral
lesion is enough to abolish our sense of numbers?
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« How can a five-month-old baby know that 1 plus 1 equals 2?
• How is it possible for animals without language, such as chimpanzees, rats,

and pigeons, to have some knowledge of elementary arithmetic?

My hypothesis is that the answers to all these questions must be sought at a
single source: the structure of our brain. Every single thought we entertain, every
calculation we perform, results from the activation of specialized neuronal cir-
cuits implanted in our cerebral cortex. Our abstract mathematical constructions
originate in the coherent activity of our cerebral circuits and of the millions of
other brains preceding us that helped shape and select our current mathematical
tools. Can we begin to understand the constraints that our neural architecture
impose on our mathematical activities?

Evolution, ever since Darwin, has remained the reference for biologists. In the
case of mathematics, both biological and cultural evolution matter. Mathematics
is not a static and God-given ideal, but an ever-changing field of human research.
Even our digital notation of numbers, as obvious as it may seem now, is the fruit
of a slow process of invention over thousands of years. The same holds for the
current multiplication algorithm, the concept of square root, the sets of real,
imaginary, or complex numbers, and so on. All still bear scars of their difficult
and recent birth.

The slow cultural evolution of mathematical objects is a product of a very
special biological organ, the brain, that itself represents the outcome of an even
slower biological evolution governed by the principles of natural selection. The
same selective pressures that have shaped the delicate mechanisms of the eye, the
profile of the hummingbird's wing, or the minuscule robotics of the ant have also
shaped the human brain. From year to year, species after species, ever more spe-
cialized mental organs have blossomed within the brain to better process the
enormous flux of sensory information received, and to adapt the organism's reac-
tions to a competitive or even hostile environment.

One of the brain's specialized mental organs is a primitive number processor
that prefigures, without quite matching it, the arithmetic that is taught in our
schools. Improbable as it may seem, numerous animal species that we consider
stupid or vicious, such as rats and pigeons, are actually quite gifted at calculation.
They can represent quantities mentally and transform them according to some of
the rules of arithmetic. The scientists who have studied these abilities believe that
animals possess a mental module, traditionally called the "accumulator," that can
hold a register of various quantities. We shall see later how rats exploit this men-
tal accumulator to distinguish series of two, three, or four sounds or to compute
approximate additions of two quantities. The accumulator mechanism opens up
a new dimension of sensory perception through which the cardinal of a set of
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objects can be perceived just as easily as their color, shape, or position. This
"number sense" provides animals and humans alike with a direct intuition of
what numbers mean.

Tobias Dantzig, in his book exalting "number, the language of science,"
underlined the primacy of this elementary form of numerical intuition: "Man,
even in the lower stages of development, possesses a faculty which, for want of a
better name, I shall call Number Sense. This faculty permits him to recognize that
something has changed in a small collection when, without his direct knowledge,
an object has been removed or added to the collection."

Dantzig wrote these words in 1954, when psychology was dominated by Jean
Piaget's theory, which denied young children any numerical abilities. It took
twenty more years before Piagetian constructivism was definitely refuted and
Dantzig's insight was confirmed. All people possess, even within their first year of
life, a well-developed intuition about numbers. Later we consider in some detail
the ingenious experiments which demonstrate that human babies, far from being
helpless, already know right from birth some fragments of arithmetic compara-
ble to the animal knowledge of number. Elementary additions and subtractions
are already available to six-month-old babies!

Let there be no misunderstanding. Obviously, only the adult Homo sapiens
brain has the power to recognize that 37 is a prime number or to calculate
approximations of the number p. Indeed, such feats remain the privilege of only
a few humans in a few cultures. The baby brain and a fortiori the animal brain, far
from exhibiting our mathematical flexibility, work their minor arithmetical mira-
cles only within quite limited contexts. In particular, their accumulator cannot
handle discrete quantities, but only continuous estimates. Pigeons will never be
able to distinguish 49 from 50, because they cannot represent these quantities
other than in an approximate and variable fashion. For an animal, 5 plus 5 does
not make 10, but only about 10: maybe 9, 10, or 11. Such poor numerical acuity,
such fuzziness in the internal vision of numbers, prevents the emergence of exact
arithmetical knowledge in animals. By the very structure of their brains, they are
condemned to an approximate arithmetic.

Humans, however, have been endowed by evolution with a supplementary
competence: the ability to create complex symbol systems, including spoken and
written language. Words or symbols, because they can separate concepts with
arbitrarily close meanings, allow us to move beyond the limits of approximation.
Language allows us to label infinitely many different numbers. These labels, the
most evolved of which are the Arabic numerals, can symbolize and discretize any
continuous quantity. Thanks to them, numbers that may be close in quantity but
whose arithmetical properties are very different can be distinguished. Only then
can the invention of purely formal rules for comparing, adding or dividing two
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numbers be conceived. Indeed, numbers acquire a life of their own, devoid of any
direct reference to concrete sets of objects. The scaffolding of mathematics can
then rise, ever higher, ever more abstract.

This raises a paradox, however. Our brains have remained essentially un-
changed since Homo sapiens first appeared 100,000 years ago. Our genes, indeed,
are condemned to a slow and minute evolution, dependent on the occurrence of
chance mutations. It takes thousands of aborted attempts before a favorable
mutation, one worthy of being passed on to coming generations, emerges from
the noise. In contrast, cultures evolve through a much faster process. Ideas, inven-
tions, progress of all kinds can spread to an entire population through language
and education as soon as they have germinated in some fertile mind. This is how
mathematics, as we know it today, has emerged in only a few thousand years. The
concept of number, hinted at by the Babylonians, refined by the Greeks, purified
by the Indians and the Arabs, axiomatized by Dedekind and Peano, generalized
by Galois, has never ceased to evolve from culture to culture—obviously, without
requiring any modification of the mathematician's genetic material! In a first
approximation, Einstein's brain is no different from that of the master who, in
the Magdalenian, painted the Lascaux cave. At elementary school, our children
learn modern mathematics with a brain initially designed for survival in the
African savanna.

How can we reconcile such biological inertia with the lightning speed of cul-
tural evolution? Thanks to extraordinary modern tools such as positron emission
tomography or functional magnetic resonance imaging, the cerebral circuits that
underlie language, problem solving, and mental calculation can now be imaged
in the living human brain. We will see that when our brain is confronted with a
task for which it was not prepared by evolution, such as multiplying two digits, it
recruits a vast network of cerebral areas whose initial functions are quite differ-
ent, but which may, together, reach the desired goal. Aside from the approximate
accumulator that we share with rats and pigeons, our brain probably does not
contain any "arithmetical unit" predestined for numbers and math. It compen-
sates this shortcoming, however, by tinkering with alternative circuits that may
be slow and indirect, but are more or less functional for the task at hand.

Cultural objects—for instance written words or numbers—may thus be con-
sidered as parasites that invade cerebral systems initially destined to a quite differ-
ent use. Occasionally, as in the case of word reading, the parasite can be so
intrusive as to completely replace the previous function of a given brain area with
its own. Thus, some brain areas that, in other primates, seem to be dedicated to
the recognition of visual objects acquire in the literate human a specialized and
irreplaceable role in the identification of letter and digit strings.
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One cannot but marvel at the flexibility of a brain that can, depending on con-
text and epoch, plan a mammoth hunt or conceive of a demonstration of Fer-
mat's last theorem. However, this flexibility should not be overestimated. Indeed,
my contention is that it is precisely the assets and the limits of our cerebral cir-
cuits that determine the strong and weak points of our mathematical abilities.
Our brain, like that of the rat, has been endowed since time immemorial with an
intuitive representation of quantities. This is why we are so gifted for approxima-
tion, and why it seems so obvious to us that 10 is larger than 5. Conversely, our
memory, unlike that of the computer, is not digital but works by association of
ideas. This is probably the reason why we have such a hard time remembering
the small number of equations that make up the multiplication table.

Just as the budding mathematician's brain thus lends itself more or less easily
to the requirements of mathematics, mathematical objects also evolve to match
our cerebral constraints increasingly well. The history of mathematics provides
ample evidence that our concepts of number, far from being frozen, are in con-
stant evolution. Mathematicians have worked hard for centuries to improve the
usefulness of numerical notations by increasing their generality, their fields of
application, and their formal simplicity. In doing so, they have unwittingly invent-
ed ways of making them fit the constraints of our cerebral organization. Though
a few years of education now suffice for a child to learn digital notation, we
should not forget that it took centuries to perfect this system before it became
child's play. Some mathematical objects now seem very intuitive only because
their structure is well adapted to our brain architecture. On the other hand, a
great many children find fractions very difficult to learn because their cortical
machinery resists such a counterintuitive concept.

If the basic architecture of our brain imposes such strong limits on our under-
standing of arithmetic, why do a few children thrive on mathematics? How have
outstanding mathematicians such as Gauss, Einstein, or Ramanujan attained such
extraordinary familiarity with mathematical objects? And how do some idiot
savants with an IQ of 50 manage to become experts in mental calculation? Do we
have to suppose that some people started in life with a particular brain architec-
ture or a biological predisposition to become geniuses? A careful examination of
this supposition will show us that this is unlikely. At present, at any rate, very lit-
tle evidence exists that great mathematicians and calculating prodigies have been
endowed with an exceptional neurobiological structure. Like the rest of us,
experts in arithmetic have to struggle with long calculations and abstruse mathe-
matical concepts. If they succeed, it is only because they devote a considerable
time to this topic and eventually invent well-tuned algorithms and clever short-
cuts that any of us could learn if we tried and that are carefully devised to take
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advantage of our brain's assets and get round its limits. What is special about
them is their disproportionate and relentless passion for numbers and mathemat-
ics, occasionally fueled by their inability to entertain normal relations with other
fellow humans, a cerebral disease called autism. I am convinced that children of
equal initial abilities may become excellent or hopeless at mathematics depend-
ing on their love or hatred of the subject. Passion breeds talent—and parents and
teachers therefore have a considerable responsibility in developing their children's
positive or negative attitudes toward mathematics.

In Gulliver's Travels, Jonathan Swift describes the bizarre teaching methods
used at the mathematics school of Lagado, in Balnibarbi Island:

I was at the mathematical school, where the master taught his pupils after a
method scarcely imaginable to us in Europe. The proposition and demonstra-
tion were fairly written on a thin wafer, with ink composed of a cephalic tinc-
ture. This the student was to swallow upon a fasting stomach, and for three
days following eat nothing but bread and water. As the wafer digested, the
tincture mounted to his brain, bearing the proposition along with it. But the
success hath not hitherto been answerable, partly by some error in the quan-
tum or composition, and partly by the perverseness of lads, to whom this
bolus is so nauseous, that they generally steal aside, and discharge it upwards
before it can operate; neither have they been yet persuaded to use so long an
abstinence as the prescription requires.

Although Swift's description reaches the height of absurdity, his basic meta-
phor of learning mathematics as a process of assimilation has an undeniable
truth. In the final analysis, all mathematical knowledge is incorporated into the
biological tissues of the brain. Every single mathematics course that our children
take is made possible by the modifications of millions of their synapses, implying
widespread gene expression and the formation of billions of molecules of neuro-
transmitters and receptors, with modulation by chemical signals reflecting the
child's level of attention and emotional involvement in the topic. Yet the neuronal
networks of our brains are not perfectly flexible. The very structure of our brain
makes certain arithmetical concepts easier to "digest" than others.

I hope that the views I am defending here will eventually lead to improve-
ments in teaching mathematics. A good curriculum would take into account the
assets and limits of the learner's cerebral structure. To optimize the learning
experiences of our children, we should consider what impact education and brain
maturation have on the organization of mental representations. Obviously, we
are still far from understanding to what extent learning can modify our brain
machinery. The little that we already know could be of some use, however. The
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fascinating results that cognitive scientists have accumulated for the last twenty
years on how our brain does math have not, until now, been made public and
allowed to percolate through to the world of education. I would be delighted if
this book served as a catalyst for improved communication between the cognitive
and education sciences.

This book will take you on a tour of arithmetic as seen from the eyes of a biol-
ogist, but without neglecting its cultural components. In Chapters 1 and 2,
through an initial visit of animals and human infant's abilities for arithmetic, I
shall try to convince you that our mathematical abilities are not without biologi-
cal precursors. Indeed, in Chapter 3 we shall find many traces of the animal mode
of processing numbers still at work in adult human behavior. In Chapters 4 and 5,
by observing how children learn to count and to calculate, we shall then attempt
to understand how this initial approximate system can be overcome, and the diffi-
culties that the acquisition of advanced mathematics raises for our primate brain.
This will be a good occasion to investigate current methods of mathematical
teaching and to examine the extent to which they have naturally adapted to our
mental architecture. In Chapter 6 we shall also try to sort out the characteristics
that: distinguish a young Einstein or a calculating prodigy from the rest of us. In
Chapters 7 and 8, finally, our number hunt will end up in the fissures of the cere-
bral cortex, where the neuronal circuits that support calculation are located, and
from which, alas, they can be dislodged by a lesion or a vascular accident, thus
depriving otherwise normal persons of their number sense.
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Talented and
Gifted Animals

One stone,
two houses
three ruins

four gravediggers,
one garden,

some flowers

One raccoon.

Jacques Prevert, Inventaire

Books on natural history have recounted the following anecdote since the
eighteenth century:

A nobleman wanted to shoot down a crow that had built its nest atop a tower
on his domain. However, whenever he approached the tower, the bird flew
out of gun range, and waited until the man departed. As soon as he left, it
returned to its nest. The man decided to ask a neighbor for help. The two
hunters entered the tower together, and later only one of them came out. But
the crow did not fall into this trap and carefully waited for the second man to
come out before returning. Neither did three, then four, then five men fool
the clever bird. Each time, the crow would wait until all the hunters had
departed. Eventually, the hunters came as a party of six. When five of them
had left the tower, the bird, not so numerate after all, confidently came back,
and was shot down by the sixth hunter.

Is this anecdote authentic? Nobody knows. It is not even clear that it has any-
thing to do with numerical competence: For all we know, the bird could have

1 3
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memorized the visual appearance of each hunter rather than their number.
Nevertheless, I decided to highlight it because it provides a splendid illustration of
many aspects of animal arithmetic that are the subject of this chapter. First, in
many tightly controlled experiments, birds and many other animal species appear
to be able to perceive numerical quantities without requiring special training.
Second, this perception is not perfectly accurate, and its accuracy decreases with
increasingly larger numbers; hence the bird confounding 5 and 6. Finally, and
more facetiously, the anecdote shows how the forces of Darwinian selection also
apply to the arithmetical domain. If the bird had been able to count up to 6, it
would perhaps never have been shot! In numerous species, estimating the num-
ber and ferocity of predators, quantifying and comparing the return of two
sources of food, are matters of life and death. Such evolutionary arguments
should help make sense of the many scientific, experiments that have revealed
sophisticated procedures for numerical calculation in animals.

A Horse Named Hans

At the beginning of this century, a horse named Hans made it to the headlines of
German newspapers. His master, Wilhelm von Osten, was no ordinary circus ani-
mal trainer. Rather, he was a passionate man who, under the influence of Dar-
win's ideas, had set out to demonstrate the extent of animal intelligence. He
wound up spending more than a decade teaching his horse arithmetic, reading,
and music. Although the results were slow to come, they eventually exceeded all
his expectations. The horse seemed gifted with a superior intelligence. It could
apparently solve arithmetical problems and even spell out words!

Demonstrations of Clever Hans's abilities often took place in von Osten's
yard. The public would form a half-circle around the animal and suggest an arith-
metical question to the trainer—for instance, "How much is 5 plus 3?" Von Osten
would then present the animal with five objects aligned on a table, and with three
other objects on another. After examining the "problem," the horse responded by
knocking on the ground with its hoof the number of times equal to the total of
the addition. However, Hans's mathematical abilities far exceeded this simple
feat. Some arithmetical problems were spoken aloud by the public, or were writ-
ten in digital notation on a blackboard, and Hans could solve them just as easily
(Figure 1.1). The horse could also add two fractions such as 2/5 and 1/2 and give
the answer 9/10 by striking nine times, then ten times with its hoof. It was even
said that to the question of determining the divisors of 28, Hans came out very
appropriately with the answers 2, 4, 7, 14, and 28. Obviously, Hans's number
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Figure 1.1. Clever Hans " and his master Wilhelm von Osten strike a pose in front of an impres-

sive array of arithmetic problems. The larger blackboard shows the numerical coding the horse

used to spell words. (Copyright © Bildarchiv Preussicher Kulturbesitz.)

knowledge surpassed by far what a school teacher would expect today of a rea-
sonably bright pupil!

In September 1904, a committee of experts, among whom figured the emi-
nent German psychologist Carl Stumpf, concluded after an extensive investiga-
tion that Hans's feats were real and not a result of cheating. This generous
conclusion, however, did not satisfy Oskar Pfungst, one of Stumpf's own stu-
dents. With von Osten's help—the master was fully convinced of his prodigy's
superior intelligence—he began a systematic study of the horse's abilities.
Pfungst's experiments, even by today's standards, remain a model of rigor and
inventiveness. His working hypothesis was that the horse could not but be totally
inept in mathematics. Therefore, it had to be the master himself, or someone in
the public, who knew the answer and sent the animal a hidden signal when the
target number of strokes had been reached, thus commanding the animal to stop
knocking with its hoof.

To prove this, Pfungst invented a way of dissociating Hans's knowledge of a
problem from what its master knew. He used a procedure that differed only
slightly from the one described above. The master watched carefully as a simple
addition was written in large printed characters on a panel. The panel was then
oriented toward the horse in such a way that only it could see the problem and
answer it. However, on some trials, Pfungst surreptitiously modified the addition
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before showing it to the horse. For instance, the master could see 6+2 whereas in
fact the horse was trying to solve 6+3.

The results of this experiment, and of a series of follow-up controls, were
clear-cut. Whenever the master knew the correct response, Hans got the right
answer. When, on the contrary, the master was not aware of the solution, the
horse failed. Moreover, it often produced an error that matched the numerical
result expected by its master. Obviously, it was von Osten himself, rather than
Hans, who was finding the solution to the various arithmetical problems. But
how then did the horse know how to respond? Pfungst eventually deduced that
Hans's truly amazing ability lay in detecting minuscule movements of its master's
head or eyebrows that invariably announced the time to stop the series of knocks.
In fact, Pfungst never doubted that the trainer was sincere. He believed that
the signals were completely unconscious and involuntary. Even when von Osten
was absent, the horse continued to respond correctly: Apparently, it detected the
buildup of tension in the public as the expected number of hoof strokes was
attained. Pfungst himself could never eliminate all forms of involuntary commu-
nication with the animal, even after he discovered the exact nature of the body
clues it used.

Pfungst's experiments largely discredited demonstrations of "animal intelli-
gence" and the competence of self-proclaimed experts such as Stumpf who had
blindly subscribed to them. Indeed the Clever Hans phenomenon is still taught in
psychology classes today. It remains a symbol of the pernicious influence that
experimenter expectations and interventions, however small, may have on the
outcome of any psychological experiment, with humans or with animals. His-
torically, Hans's story has played a crucial role in shaping the critical minds of psy-
chologists and ethologists. It has drawn attention to the necessity for a rigorous
experimental design. Since an essentially invisible stimulation as brief as the blink
of an eye can influence the performance of animals, a well-designed experiment
has to be devoid, from the start, of any possible source of errors. This lesson was
particularly well-received by behaviorists, such as B. F. Skinner, who dedicated a
large amount of work to the development of rigorous experimental paradigms
for the study of animal behavior.

Unfortunately, Hans's exemplary case has also had more negative conse-
quences on the development of psychological science. It has imposed an aura of
suspicion onto the whole area of research on the representation of numbers in
animals. Ironically, scientists now meet every single demonstration of numerical
competence in animals with the same raised eyebrows that served as a cue to
Hans! Such experiments are immediately associated, consciously or not, with
Hans's story and are therefore suspected of a basic flaw in design, if not of down-
right forgery. This is an irrational prejudice, however. Pfungst's experiments
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showed only that Hans's numerical abilities were a fluke. By no means did they
prove that it is impossible for an animal to understand some aspects of arith-
metic. For a long time, however, the scientist's attitude was to systematically look
for some experimental bias that might explain animal behavior without resorting
to the hypothesis that animals have even an embryonic knowledge of calculation.
For a while, even the most convincing results failed to convince anyone. Some
researchers even preferred to attribute to animals mysterious abilities such as
"rhythm discrimination" faculty, for instance, rather than admit that they could
enumerate a collection of objects. In brief, the scientific community tended to
throw out the baby with the bath water.

Before turning to some of the experiments that finally convinced :" but the
most skeptical of researchers, I would like to conclude Hans's story with a mod-
ern anecdote. Even today, the training of circus animals rests on methods rather
similar to Hans's trick. If you ever see a show in which an animal adds numbers,
spells words, or some surprising deed of this kind, you may safely bet that its
behavior rests, like Hans's, on a hidden communication with its human trainer.
Let me stress again that such communication need not be intentional. The train-
er is often sincerely convinced of his pupil's gifts. A few years ago, I came upon an
amusing article in a local Swiss newspaper. A journalist had visited the home of
Gilles and Caroline P., whose poodle, named Poupette, seemed extraordinarily
gifted in mathematics. Figure 1.2 shows Poupette's proud owner presenting his
faithful and brilliant companion with a series of written digits that it was sup-
posed to add. Poupette responded without ever making an error by tapping on its
master's hand with its paw the exact number of times required, and then licking
the hand after the correct count had been reached. According to its master, the
canine prodigy had required only a brief training period, which led him to believe
in reincarnation or some similar paranormal phenomenon. The journalist, how-
ever, wisely noted that the dog could react to subtle cues from the master's eye-
lids, or to some tiny motions of his hand when the correct count was reached. So
this was indeed a case of reincarnation after all: the reincarnation of Clever
Hans's stratagem, of which Poupette's story constituted, a century later, an
astonishing replication.

Rat Accountants

Following the Hans episode, several renowned American laboratories developed
research programs on animal mathematical abilities. Many such projects failed. A
famous German ethologist named Otto Koehler, however, was more successful.
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Figure 1.2. A modern canine "clever Hans": Poupette, the dog that could supposedly add digits.

One of his trained crows, Jacob, apparently learned to choose, among several
containers, the one whose lid bore a fixed number of five points. Because the
size, the shape, and the location of the points varied randomly from trial to trial,
only an accurate perception of the number 5 could account for this performance.
Nevertheless, the results achieved by Koehler's team had little impact, partly
because most of their results were published only in German, and partly because
Koehler failed to convince his colleagues that all possible sources of error, such as
unintentional experimenter communication, olfactory cues or the like, had been

excluded.
In the 1950s and 1960s, Francis Mechner, an animal psychologist at Columbia

University, followed by John Platt and David Johnson at the University of Iowa,
introduced a very convincing experimental paradigm that I shall schematically
describe here. A rat that had been temporarily deprived of food was placed in a
closed box with two levers, A and B. Lever B was connected to a mechanical
device that delivered a small amount of food. However, this reward system did
not work at once. The rat first had to repeatedly press lever A. Only after it had
pressed for a fixed number of times n on lever A could it switch to lever B and get
its deserved treat. If the rat switched too early to lever B, not only did it fail to get
any food, but it received a penalty. On different experiments, the light could go off

1 8
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for a few seconds, or the counter was reset so that the rat had to start all over
again with a new series of n presses on lever A.

How did rats behave in this rather unusual environment? They initially discov-
ered, by trial and error, that food would appear when they pressed several times
on lever A, and then once on lever B. Progressively, the number of times that they
had to press was estimated more and more accurately. Eventually, at the end of
the learning period, the rats behaved very rationally in relation to the number n
that had been selected by the experimenter. The rats that had to press four times
on lever A before lever B would deliver food, did press it about four times. Those
that were placed in the situation where eight presses were required, waited until
they had produced about eight squeezes, and so on (see Figure 1.3). Even when
the requisite number was as high as twelve or sixteen, those clever rat accoun-
tants continued to keep their registers up to date!

Two details are worth mentioning. First, the rats often squeezed lever A a lit-
tle more than the minimum required—five times instead of four, for instance.
Again, this was an eminently rational strategy. Since they received a penalty for
switching prematurely to lever B, the rats preferred to play it safe and press lever
A once more rather than once less. Second, even after considerable training, the
rats' behavior remained rather imprecise. Where the optimal strategy would
have been to press lever A exactly four times, the rats often pressed it four, five, or

Figure 1.3. In an experiment by Mechner, a rat learns to press lever A a predetermined number of

times before turning to a second lever B. The rat matches approximately the number selected by the

experimenter, although its estimate becomes increasingly variable as the numbers get larger.

(Adapted from Mechner 1958 by permission of the author and publisher; copyright © 1958 by the

Society for the Experimental Analysis of Behavior.)
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six times, and on some trials they even squeezed it three or seven times. Their
behavior was definitely not "digital," and variation was considerable from trial to
trial. Indeed, this variability increased in direct proportion to the target number
that the rats estimated. When the target number of presses was four, the rats'
responses ranged from three to seven presses, but when the target was sixteen,
the responses went from twelve to twenty-four, thus covering a much larger
interval. The rats appeared to be equipped with a rather imprecise estimation
mechanism, quite different from our digital calculators.

At this stage, many of you are probably wondering whether I am not too lib-
eral in attributing numerical competence to rats, and whether a simpler explana-
tion of their behavior might not be found. Let me first remark that the Clever
Hans effect cannot have any influence on this type of experiment because the rats
are isolated in their cages and because all experimental events are controlled by
an automated mechanical apparatus. However, is the rat really sensitive to the
number of times the lever is pressed, or does it estimate the time elapsed since
the beginning of a trial, or some other nonnumerical parameter? If the rat
pressed at a regular rate, for instance once per second, then the above behavior
might be fully explained by temporal rather than numerical estimation. While
pressing on lever A, the rat would wait four, eight, twelve, or sixteen seconds,
depending on the imposed schedule, before switching to lever B. This explanation
might be considered simpler than the hypothesis that rats can count their move-
ments—although, in fact, estimating duration and numbers are equally complex
operations.

To refute such a temporal explanation, Francis Mechner and Laurence Guev-
rekian used a very simple control: They varied the degree of food deprivation
imposed on the rats. When the rats are really hungry, and therefore eager to
obtain their food reward as fast as possible, they press the levers much faster.
Nevertheless, this increase in rate has absolutely no effect on the number of times
they press the lever. The rats that are trained with a target number of four presses
continue to produce between three and seven presses, while the rats trained to
squeeze eight times continue to squeeze about eight times, and so on. Neither
the average number of presses, nor the dispersion of the results, are modified
with higher rates. Obviously, a numerical rather than a temporal parameter dri-
ves the rats' behavior.

A more recent experiment by Russell Church and Warren Meck, at Brown
University, demonstrates that rats spontaneously pay as much attention to the
number of events as to their duration. In Church and Meck's experiment, a loud-
speaker placed in the rats' cage presented a sequence of tones. There were two
possible sequences. Sequence A was made up of two tones and lasted a total of
two seconds, whereas sequence B was made up of eight tones and lasted eight
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seconds. The rats had to discriminate between the two melodies. After each tune,
two levers were inserted in the cage. To receive a food reward, the rats had to
press the left lever if they had heard sequence A, and the right if they had heard
sequence B (see Figure 1.4).

Several preliminary experiments had shown that rats placed in this situation
rapidly learned to press the correct lever. Obviously, they could use two distinct
parameters to distinguish A from B: the total duration of the sequence (two ver-
sus eight seconds) or the number of tones (two versus eight). Did rats pay atten-
tion to duration, number, or both? In order to find out, the experimenters
presented some test sequences in which duration was fixed while number was
varied, and others in which number was fixed while duration was varied. In the

Figure 1.4. Meck and Church trained rats to press a lever on the left when they heard a short

two-tone sequence, and a lever on the right when they heard a long eight-tone sequence. Subse-

quently, the rats generalized spontaneously: for equal numbers of sounds, they discriminated two-

second sequences from eight-second sequences (top panel), and for an equal total duration, they

discriminated two tones from eight tones (bottom panel). In both cases, four seems to be the "sub-

jective middle" of 2 and 8, the point where rats cannot decide whether they should press right or

left. (Adapted from Meck and Church 1983.)
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first case, all sequences lasted four seconds, but were made up of from two to
eight tones. In the second case, all sequences were made up of four tones, but
duration extended from two to eight seconds. On all such test sequences, the rats
always received a food reward, regardless of the lever they picked. In anthro-
pocentric terms, the researchers were simply asking what these new stimuli
sounded like to the rats, without letting the reward interfere with their decision.
The experiment therefore measured the rats' ability to generalize previously
learned behaviors to a novel situation.

The results are clear-cut. Rats generalized just as easily on duration as on
number. When duration was fixed, they continued to press the left lever when
they heard two tones, and the right lever when they heard eight tones. Con-
versely, when number was fixed, they pressed left for two-second sequences, and
right for eight-second sequences. But what about intermediate values? Rats
apparently reduced them to the closest stimulus that they had learned. Thus, the
new three-tone sequence elicited the same response as the two-tone sequence
used for training, while sequences with five or six tones were classified just as the
original sequence of eight tones had been. Curiously, when the sequence com-
prised just four tones, the rats could not decide whether they should press left or
right. For a rat, four appears to be the subjective midpoint between the numbers
two and eight!

Keep in mind that the rats did not know during training that they would be
tested subsequently with sequences that varied in duration or in number of
tones. Hence, this experiment shows that when a rat listens to a melody, its brain
simultaneously and spontaneously registers both the duration and the number of
tones. It would be a serious mistake to think that because these experiments use
conditioning, they somehow teach the rats how to count. On the contrary, rats
appear on the scene with state-of-the-art hardware for visual, auditory, tactile,
and numerical perception.Conditioning merely teaches the animal to associate
perceptions that it has always experienced, such as representations of stimulus
duration, color, or number, with novel actions such as pressing a lever. There is
no reason to think that number is a complex parameter of the external world,
one that is more abstract than other so-called objective or physical parameters
such as color, position in space, or temporal duration. In fact, provided that an
animal is equipped with the appropriate cerebral modules, computing the
approximate number of objects in a set is probably no more difficult than per-
ceiving their colors or their positions.

Indeed, we now know that rats and many other species spontaneously pay
attention to numerical quantities of all kinds—actions, sounds, light flashes, food
morsels. For instance researchers have proved that raccoons, when presented
with several transparent boxes with grapes inside, can learn to systematically
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select those that contain three grapes and to neglect those that contain two or
four. Likewise, rats have been conditioned to systematically take the fourth tun-
nel on the left in a maze, regardless of the spacing between consecutive tunnels.
Other researchers have taught birds to pick the fifth seed that they find when vis-
iting several interconnected cages. And pigeons can, under some circumstances,
estimate the number of times they have pecked at a target and can discriminate,
for instance, between forty-five and fifty pecks. As a final example, several ani-
mals, including rats, appear to remember the number of rewards and punish-
ments that they have received in a given situation. An elegant experiment by E. J.
Capaldi and Daniel Miller at Purdue University has even shown that when rats
receive food rewards of two different kinds—say, raisins and cereals—they keep
in mind three pieces of information at the same time: the number of raisins that
they have eaten, the number of pieces of cereals, and the total number of food
items. In brief, far from being an exceptional ability, arithmetic is quite common
in the animal world. The advantages that it confers for survival are obvious. The
rat that remembers that its hideout is the fourth to the left will move faster in the
dark maze of tunnels that it calls home. The squirrel that notices that a branch
bears two nuts, and neglects it for another one that bears three, will have more
chances of making it safely through the winter.

How Abstract Are Animal Calculations?

When a rat presses a lever twice, hears two sounds, and eats two seeds, does it
recognize that these events are all instances of the number "2"? Or can't it see the
link between numbers that are perceived through different sensory modalities?
The ability to generalize across different modalities of perception or action is an
important component of what we call the number concept. Let us suppose, as an
admittedly extreme case, that a child systematically utters the word "four" when-
ever he or she sees four objects, but randomly picks the words "three," "four," or
"nine" when he or she hears four sounds or makes four jumps. Although perfor-
mance is no doubt excellent with visual stimuli, we would be reluctant: to grant
the child knowledge of the concept of "4", because we consider possession of this
concept to entail being able to apply it to many different multimodal situations.
As a matter of fact, as soon as children have learned a number word, they can
immediately use it to count their toy cars, the meows of their cat, or the misde-
meanors of their little brother. What about rats? Is their numerical competence
confined to certain sensory modalities, or is it abstract?

Unfortunately any answer must remain tentative because few successful
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experiments have been done on multimodal generalization in animals. However,
Russell Church and Warren Meck have shown that rats represent number as an
abstract parameter that is not tied to a specific sensory modality, be it auditory or
visual. They again placed rats in a cage with two levers, but this time stimulated
them with visual as well as with auditory sequences. Initially, the rats were condi-
tioned to press the left lever when they heard two tones, and the right lever when
they heard four tones. Separately, they were also taught to associate two light
flashes with the left lever, and four light flashes with the right lever. The issue
was, how were these two learning experiences coded in the rat brain? Were they
stored as two unrelated pieces of knowledge? Or had the rats learned an abstract
rule such as "2 is left, and 4 is right"? To find out, the two researchers presented
mixtures of sounds and light flashes on some trials. They were amazed to observe
that when they presented a single tone synchronized with a flash, a total of two
events, the rats immediately pressed the left lever. Conversely, when they present-
ed a sequence of two tones synchronized with two light flashes, for a total of four
events, the rats systematically pressed the right lever. The animals generalized
their knowledge to an entirely novel situation. Their concepts of the numbers "2"
and "4" were not linked to a low level of visual or auditory perception.

Consider how peculiar the rats' behavior was on trials with two tones syn-
chronized with two light flashes. Remember that in the course of their training,
the rats were always rewarded for pressing the left lever after hearing two tones,
and likewise after seeing two flashes of light. Thus, both the auditory "two tones"
stimulus and the visual "two flashes" stimulus were associated with pressing the
left lever. Nevertheless, when these two stimuli were presented together, the rats
pressed the lever that had been associated with the number 4! To better grasp the
significance of this finding, compare it with a putative experiment in which rats
are trained to press the left lever whenever they see a square (as opposed to a cir-
cle), and to respond left whenever they see the color red (as opposed to green). If
the rats were presented with a red square—the combination of both stimuli—I
bet that they would press even more decidedly on the left lever. Why are the
numbers of tones and flashes grasped differently from shapes and colors? The
experiment demonstrates that rats "know," to some extent, that numbers do not
add up in the same way as shapes and colors. A square plus the color red makes a
red square, but two tones plus two flashes do not evoke an even greater sensation
of twoness. Rather, 2 plus 2 makes 4, and the rat brain seems to appreciate this
fundamental law of arithmetic.

Perhaps the best example of abstract addition abilities in an animal comes
from work done by Guy Woodruff and David Premack at the University of Penn-
sylvania. They set out to prove that a chimpanzee could do arithmetic with sim-
ple fractions. In their first experiment, the chimpanzee's task was simple: It was
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rewarded for selecting, among two objects, the one that was physically identical
to a third one. For instance, when presented with a glass half-filled with a blue liq-
uid, the animal had to point toward the identical glass when presented next to
another glass that was filled up to three-quarters of its volume. The chimp imme-
diately mastered this simple physical matching task. Then the decision was pro-
gressively made more abstract. The chimp might be shown a half-full glass again,
but now the options were either half an apple or three-quarters of an apple.
Physically speaking, both alternatives differed widely from the sample stimulus;
yet the chimpanzee consistently selected the half apple, apparently basing its
responses on the conceptual similarity between half a glass and half an apple.
Fractions of one-quarter, one-half, and three-quarters were tested with similar
success: The animal knew that one-quarter of a pie is to a whole pie as one-quar-
ter of a glass of milk is to a full glass of milk.

In their last experiment, Woodruff and Premack showed that chimpanzees
could even mentally combine two such fractions: When the sample stimulus was
made of one-quarter apple and one-half glass, and the choice was between one
full disc or three-quarters disc, the animals chose the latter more often than
chance alone would predict. They were obviously performing an internal compu-
tation not unlike the addition of two fractions: 1/4+1/2=

3/4. Presumably, they did
not use sophisticated symbolic calculation algorithms as we would. But they
clearly had an intuitive grasp of how these proportions should combine.

A final anecdote concerning Woodruff and Premack's work: Though the
manuscript reporting their work was initially titled "Primitive mathematical con-
cepts in the chimpanzee: proportionality and numerosity" an editorial error
made it appear in the pages of the scientific journal Nature under the heading
"Primative mathematical concepts ... "! Involuntary as it was, this alteration was
not so improper. For primitive, indeed, the animal's ability was not. And if "pri-
mative" was taken to mean "specific to primates," then the neologism seemed
very appropriate here because such an abstract ability to add fractions has not
been observed in any other species so far.

Addition, however, is not the only numerical operation in the animal reper-
toire. The ability to compare two numerical quantities is an even more funda-
mental ability, and indeed it is widespread among animals. Show a chimpanzee
two trays on which you have placed several bits of chocolate. On the first tray,
two piles of chocolate chips are visible, one with four pieces, and the other with
three pieces. The second tray contains a pile with five pieces of chocolate and,
separate from it, a single piece. Leave the animal enough time to watch the situa-
tion carefully before letting it choose one tray and eat its content. Which tray do
you think that it will pick? Most of the time, without training, the chimpanzee
selects the tray with the largest total number of chocolate chips (see Figure 1.5).
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Figure 1.5. A chimpanzee spontaneously selects the pair of trays with the greater total number of

chocolate bits, revealing its inborn ability to add and compare approximate numerosities.

(Reprinted from Rumbaugh et al. 1987.)

Hence, the greedy primate must spontaneously compute the total of the first
tray (4+3=7), then the total of the second tray (5+1=6), and finally it must reckon
that 7 is larger than 6 and that it is therefore advantageous to choose the first tray.

If the chimp could not do the additions, but was content with choosing the tray
with the largest single pile of chocolates, it should have been wrong in this partic-

ular example because while the pile with five chips on the second tray exceeds
each of the piles on the first tray, the total amount of chips on the first tray is larg-

er. Clearly, the two additions and the final comparison operation are all required
for success.

Although chimps perform remarkably well in selecting the larger of two num-

bers, their performance is not devoid of errors. As is frequently the case, the
nature of these errors provides important cues about the nature of the mental
representation employed. When the two quantities are quite different, such as 2
and 6, chimpanzees hardly ever fail: They always select the larger. As the quanti-
ties become closer, however, performance systematically decreases. When the
two quantities differ by only one unit, only 70% of the chimp's choices are cor-
rect. This systematic dependency of error rate on the numerical separation
between the items is called the distance effect. It is also accompanied by a magni-
tude effect. For equal numerical distances, performance decreases as the numbers
to be compared become larger. Chimpanzees have no difficulty in determining
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that 2 is larger than 1, even though these two quantities differ only by one unit.
However, they fail increasingly more often as one moves to larger numbers such
as 2 versus 3, 3 versus 4, and so on. Similar distance and magnitude effects have
been observed in a great variety of tasks and in many species, including pigeons,
rats, dolphins, and apes. No animals seem able to escape these laws of behavior—
including, as we shall see later, Homo sapiens.

Why are these effects of distance and magnitude important? Because they
demonstrate, once again, that animals do not possess a digital or discrete repre-
sentation of numbers. Only the first few numbers—1, 2, and 3—can be discrimi-
nated with high accuracy. As soon as one advances toward larger quantities,
fuzziness increases. The variability in the internal representation of numbers
grows in direct proportion to the quantity represented. This is why, when num-
bers get large, an animal has problems distinguishing number n from its successor
n+1. One should not conclude, however, that large numbers are out of reach of
the rat or pigeon brain. In fact, when numerical distance is sufficiently large, ani-
mals can successfully discriminate and compare very large numbers, on the order
of 45 versus 50. Their imprecision simply leaves them blind to the finesses of
arithmetic, such as the difference between 49 and 50.

Within the limits set by this internal imprecision, we have seen through nu-
merous examples, animals possess functional mathematical tools. They can add
two quantities and spontaneously choose the larger of two sets. Should we really
be that surprised? Let us first try to think whether the outcome of these experi-
ments could possibly have been any different. When a hungry dog is offered a
choice between a full dish and a half-full one of the same food, doesn't it sponta-
neously pick the larger meal? Acting otherwise would be devastatingly irrational.
Choosing the larger of two amounts of food is probably one of the preconditions
for the survival of any living organism. Evolution has been able to conceive such
complex strategies for food gathering, storing, and predation, that it should not
be astonishing that an operation as simple as the comparison of two quantities is
available to so many species. It is even likely that a mental comparison algorithm
was discovered early on, and perhaps even reinvented several times in the course
of evolution. Even the most elementary of organisms, after all, are confronted
with a never-ending search for the best environment with the most food, the
fewest predators, the most partners of the opposite sex, and so on. One must
optimize in order to survive, and compare in order to optimize.

We still have to understand, however, by what neural mechanisms such calcu-
lations and comparisons are carried out. Are there minicalculators in the brains of
birds, rats, and primates? How do they work?
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The Accumulator Metaphor

How can a rat know that 2 plus 2 makes 4? How can a pigeon compare forty-five
pecks with fifty? I know by experience that these results are often met with disbe-

lief, laughter, or even exasperation—especially when the audience is composed
of professors of mathematics! Our Western societies, ever since Euclid and
Pythagoras, have placed mathematics at the pinnacle of human achievements.
We view it as a supreme skill that either requires painful education or comes as
an innate gift. In many a philosopher's mind, the human ability for mathematics
derives from our competence for language, so that it is inconceivable that an ani-

mal without language can count, much less calculate with numbers.
In this context, the observations about animal behavior that I have just

described are in danger of being simply disregarded, as often happens with unex-

pected or seemingly aberrant scientific results. Without a theoretical framework
to support them, they might appear as isolated findings, peculiar indeed, but

eventually inconclusive and certainly not sufficient to question the equation
"mathematics = language." To sort out such phenomena, we need a theory that
explains, quite simply, how it is possible to count without words.

Fortunately, such a theory exists. In fact, we all know of mechanical devices
whose performances are not so different from those of rats. All cars, for instance,
are equipped with a counting mechanism that keeps a record of the number of

miles that have accumulated since the vehicle was first put in circulation. In its
simplest version, this "counter" is just a cog wheel that advances by one notch for

each additional mile. At least in principle, this example shows how a simple

mechanical device may keep a record of an accumulated quantity. Why could a
biological system not incorporate similar principles of counting?

The car counter is an imperfect example because it uses digital notation, a
symbolic system that is most probably specific to humans. In order to account for
the arithmetical abilities of animals, we should look for an even simpler meta-
phor. Imagine Robinson Crusoe, on his desert island, alone and helpless. For the
sake of argument, let us even imagine that a blow to the head has deprived him of
any language, leaving him unable to use number words for counting or calcula-
tion. How could Robinson build an approximate calculator using only the
makeshift means available to him? This is actually easier than it would seem.
Suppose that Robinson has discovered a spring in the vicinity. He digs an accumu-
lator tank in the trunk of a large tree, and places this accumulator next to the
stream, so that water does not flow directly into it but can be temporarily divert-
ed by using a small bamboo pipe. With this rudimentary device, of which the
accumulator is the central component, Robinson will be able to count, add, and
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compare approximate numerical magnitudes. In essence, the accumulator en-
ables him to master arithmetic as well as a rat or a pigeon does.

Suppose that a canoe loaded with cannibals approaches Robison's island. How
can Robinson, who is following this scene with a telescope, keep a record of the
number of attackers using his calculator? First, he would have to empty the accu-
mulator. Then, each time a cannibal landed, Robinson would briefly divert some
water from the spring into the accumulator. Furthermore, he does this so that it
always takes a fixed amount of time and that the water flow remains constant
throughout. Thus, for each attacker to be counted, a more or less fixed amount
of water flows into the accumulator. In the end, the water level in the accumula-
tor will be equal to n times the amount of water diverted at each step. This final
water level may then serve as an approximate representation of the number n of
cannibals who have landed. This is because it depends only on the number of
events that have been counted. All other parameters, such as the duration of each
event, the time interval between them, and so on, have no influence on it. The
final level of water in the accumulator is thus completely equivalent to number.

By marking the level reached by water in the accumulator, Robinson can keep
a record of how many people have landed, and he may use this number in later
calculations. The next day, for instance, a second canoe approaches. To estimate
the total number of attackers, Robinson first fills the accumulator up to the level
of the preceding day's marker, and then adds a fixed amount of water for each
newcomer, just as he did previously. The new water level, after this operation is
completed, will represent the result of the addition of attackers in the first canoe
and in the second. Robinson can keep a permanent record of this computation by
carving a different mark on the accumulator.

The day after, a few savages leave the island. To evaluate their number, Robin-
son empties his accumulator and repeats the above procedure, adding some
water for each departing cannibal. He realizes that the final water level, which
represents the number of people who have left, is much lower than the previous
day's mark. By comparing the two water levels, Robinson reaches the worrisome
conclusion that, in all likelihood, the number of natives that have left is smaller
than the number of natives that have arrived in the past two days. In brief,
Robinson, using his rudimentary device, can count, compute simple additions,
and compare the results of his calculations, just like the animals in the above
experiments.

A clear drawback of the accumulator is that numbers, although they form a
discrete set, are represented by a continuous variable: water level. Given that all
physical systems are inherently variable, the same number may be represented, at
different times, by different amounts of water in the accumulator. Let us suppose,
for instance, that water flow is not perfectly constant and varies randomly by
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between 4 and 6 liters per second, with a mean of 5 liters per second. If Robinson
diverts water for two-tenths of a second into the accumulator, one liter on aver-
age will be transferred. However, this quantity will vary from 0.8 to 1.2 liters.
Thus, if five items are counted, the final water level will vary by between 4 and 6
liters. Given that the very same levels could have been reached if four or six items
had been counted, Robinson's calculator is unable to reliably discriminate the
numbers 4, 5, and 6. If six cannibals land, and later only five depart, Robinson is
in danger of failing to notice that one of them is missing. This, by the way, is
exactly the situation that confronted the crow in the anecdote I mentioned at the
beginning of this chapter! Robinson clearly will be better able to discriminate
numbers that are more different; this is the distance effect. This effect will be
exacerbated as the numbers become larger, thus reproducing the magnitude
effect that also characterizes animal behavior.

One might object that the imaginary Robinson I am describing is not particu-
larly clever. What prevents him from using marbles instead of imprecise amounts
of water? Dropping in a bowl a single marble for each counted item would pro-
vide him with a discrete and precise representation of their number. In this man-
ner, he would avoid errors even in the most complex of subtractions. But
Robinson's machine is used here only as a metaphor for the animal brain. The
nervous system—at least the one that rats and pigeons possess—does not seem
to be able to count using discrete tokens. It is fundamentally imprecise and seems
unable to precisely keep track of the items that it counts; hence its increasing
variance for larger and larger numbers.

Although the accumulator model is described here in a very informal manner,
it is actually a rigorous mathematical model, the equations of which accurately
predict variations in animal behavior as a function of number size and numerical
distance. The accumulator metaphor thus helps us to understand why rat behav-
ior is so variable from one trial to the next. Even after considerable training, a rat
seems unable to press exactly four times on a lever, but it can press four, five, or
six times on different trials. I believe that this is due to a fundamental inability to
represent numbers 4, 5, and 6 in a discrete and individualized format, as we do.
To a rat, numbers are just approximate magnitudes, variable from time to time,
and as fleeting and elusive as the duration of sounds or the saturation of colors.
Even when an identical sequence of sounds is played twice, rats probably do not
perceive the exact same number of sounds, but only the fluctuating level of an
internal accumulator.

Of course, the accumulator is nothing more than a vivid metaphor that mere-
ly illustrates how a simple physical device can mimic, in considerable detail,
experiments on animal arithmetic. There are no taps and recipients in the brains
of rats and pigeons. Would it be possible, however, to identify, within the cere-
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brum, neuronal systems that might occupy a function similar to the components
in the accumulator model? This is a completely open question. Currently, scien-
tists are merely beginning to understand how certain parameters are modified by
various pharmacological substances. Injecting rats with metamphetamine, for
instance, seems to accelerate the internal counter. The rats injected with this sub-
stance respond to a sequence of four sounds as if they had been five or six. It is as
if the flow of water to the accumulator were accelerated by metamphetamine.
For each item counted, an amount of water larger than usual reaches the accu-
mulator, thus making the final water level too great. This is how a 4, in the input,
may end up looking like a 6 at the output. We still have little knowledge, howev-
er, of the brain regions in which metamphetamine produces its accelerating
effect. Cerebral circuitry is far from having revealed all its secrets.

Number-Detecting Neurons?

Although the cerebral circuits for number processing remain largely unknown,
neural network simulations can be used to speculate on what their organization
may be like. Neural network models are algorithms that run on a conventional
digital computer, but emulate the kind of computations that may go on in real
brain circuits. Of course, the simulations are always vastly simplified when com-
pared to the overarching complexity of real networks of neurons. In most com-
puter models, each neuron is reduced to a digital unit with an output level of
activation varying between 0 and 1. Active units excite or inhibit their neighbors
as well as more distant units via connections with a variable weight, which are
analogous to the synapses that connect real neurons. At each step, each simulated
unit sums up the inputs it receives from other units and switches on or off
depending on whether the sum exceeds a given threshold. The analogy to a real
nerve cell is crude, but one crucial property is preserved: the fact that a great
many simple computations take place at the same time in several neurons distrib-
uted within multiple circuits. Most neurobiologists believe that such massive
parallel processing is the key property that enables brains to perform complex
computations in a short time using relatively slow and unreliable biological hard-
ware.

Can parallel neuronal processing be used to process numbers? With Jean-
Pierre Changeux, a neurobiologist at the Pasteur Institute in Paris, I have pro-
posed a tentative neural network simulation of how animals extract numbers
from their environment quickly and in parallel. Our model addresses a simple
problem that rats and pigeons routinely solve: given an input retina on which
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objects of various sizes are displayed, and given a cochlea on which tones of vari-
ous frequencies are played, can a network of simulated neurons compute the
total number of visual and auditory objects? According to the accumulator mod-
el, this number can be computed by adding to an internal accumulator a fixed
quantity for each input item. The challenge is to do this with networks of simu-
lated nerve cells, and to achieve a representation of number that is independent
of the size and location of visual objects as well as of the time of presentation of
auditory tones.

We solved the problem by first designing a circuit that normalizes the visual
input with respect to size. This network detects the locations occupied by objects
on the retina, and allocates to each object, regardless of size and shape, an approx-
imately constant number of active neurons on a location map. This normalization
step is crucial because it allows the network to count each object as "one," regard-
less of size. As we shall see below, in mammals this operation may be achieved by
circuits of the posterior parietal cortex, which are known to compute a represen-
tation of object location without taking exact shape and size into account.

In our simulation, a similar operation is also performed for auditory stimuli.
Regardless of the time intervals at which they are received, auditory inputs are
accumulated in a single memory store. Once these normalizations for size, shape,
and time of presentation have been accomplished, it is easy to estimate number
—one simply has to evaluate the total neuronal activity in the normalized visual
map and in the auditory memory store. This total is equivalent to the final water
level in the accumulator, and it provides a reasonably reliable estimate of number.
In our simulation, the summation operation is taken care of by an array of units
that pool activations from all the underlying visual and auditory units. Under cer-
tain conditions, these output units fire only when the total activity they receive
falls within a predefined interval that varies from one neuron to the next. Each of
these simulated neurons therefore works as a number detector that reacts only
when a certain approximate number of objects is seen (Figure 1.6). One unit in
the network, for instance, responds optimally when presented with four objects
—be they, for instance, four visual blobs, four sounds, or two blobs and two
sounds. The same unit reacts infrequently when presented with three or five
objects, and not at all in all other cases. It therefore works as an abstract detector
of number 4. The entire number line can be covered by such detectors, each
tuned to a different approximate number, with the precision of tuning decreasing
as one moves to increasingly larger numbers. Because the simulated neurons
process all visual and auditory inputs simultaneously, the array of number detec-
tors responds very quickly—it can estimate the cardinal of a set of four objects in
parallel over the entire retina, without having to orient in turn toward each item
as we do when we count.
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Figure 1.6. A computer-simulated neural network incorporates "numerosity detectors" that

respond preferentially to a specific number of input items (top panel). Each curve shows the

response of a given unit to different numbers of items. Note the decreasing selectivity of responses

as input numerosity increases. In 1970, Thompson and his colleagues recorded similar "number-

coding" neurons in the association cortex of anesthetized cats (bottom panel). The neuron illus-

trated here responds preferentially to six consecutive events, either six flashes of light one second

apart, or six tones one or four seconds apart. (Top, adapted from Dehaene and Changeux 1993;

bottom, Thompson et al. 1970. Copyright © 1970 by American Association for the Advancement

of Science).

Astonishingly, the number-detecting neurons that the model predicts seem to
have been identified at least once in an animal brain. In the 1960s, Richard
Thompson, a neuroscientist at the University of California at Irvine, recorded the
activity of single neurons in the cortex of cats while the animals were presented
with series of tones or of light flashes. Some cells fired only after a certain num-
ber of events. One neuron, for instance, reacted after six events of any kind,
regardless of whether this was six flashes of light, six brief tones, or six longer
tones. Sensory modality did not seem to matter: The neuron apparently cared
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only about number. It did not respond in a discrete all-or-none manner either,
unlike a digital computer. Rather, its activation level grew after the fifth item,
reached a peak for the sixth, and decreased for larger numbers of items, a
response profile quite similar to that of the simulated neurons in our model.
Several similar cells, each tuned to a different number, were recorded in a small
area of the cat's cortex.

Thus, there might well be a specialized brain area, equivalent to Robinson's
accumulator, in the animal brain. Unfortunately, Thompson's study, published in
the prestigious scientific journal Science in 1970, did not receive further attention.
We still have no idea whether the number-detecting neurons are connected in the
way our model predicts, or whether cats' brains extract number using some other
method. The final word on this story will no doubt belong to those neurophysi-
ologists who will dare to continue the quest for the neuronal bases of animal
arithmetic using modern neuronal recording tools.

Fuzzy Counting

Whatever its exact neuronal implementation, if the accumulator model is cor-
rect, two conclusions must necessarily follow. First, animals can count, since they
are able to increase an internal counter each time a external event occurs. Second,
they do not count exactly as we do. Their representation of numbers, contrary to
ours, is a fuzzy one.

When we count, we use a precise sequence of number words, leaving no
room for errors to creep in. Each item counted corresponds to a move of one
step forward in the number sequence. Not so for rats. Their numbers are the
floating levels of an analogical accumulator. When a rat adds one unit to its run-
ning total, the operation bears only a vague resemblance to the logical rigorous-
ness of our "+1." It is more like adding a bucket of water to Robinson's
accumulator. The rat's condition is somewhat reminiscent of Alice's arithmetical
embarrassment in Through the Looking Glass:

"Can you do Addition?" the White Queen asked. "What's one and one and
one and one and one and one and one and one and one and one?"

"I don't know," said Alice. "I lost count."
"She can't do Addition," the Red Queen interrupted.

Presumably, although she lacked enough time to count verbally, Alice would
have been able to estimate the total to within a few units. Likewise, rats have to
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resort to approximate counting without words or digital symbols. The difference
with our verbal counting is so enormous that we should perhaps not talk about
"number" in animals at all, because by number we often imply a discrete symbol.
This is why scientists, when they describe perception of numerical quantities,
speak of "numerosity" or "numerousness" rather than number. The accumulator
enables animals to estimate how numerous some events are, but does not allow
them to compute their exact number. The animal mind can retain only fuzzy
numbers.

Is it really impossible to teach animals a symbolic notation for numbers?
Couldn't we teach them to recognize a discrete set of numerical labels similar to
our digits and number words, and then inculcate to them that these labels refer to
precise quantities? In fact, several such experiments have met with mitigated suc-
cess. In the 1980s, a Japanese researcher, Tetsuro Matsuzawa, taught a chim-
panzee named Ai the use of arbitrary signs to describe sets of objects (Figure 1.7).
The small drawings that played the role of words occupied the cells of a comput-
erized pad. The chimp could press any cells that he chose in order to describe
what it saw. After a long training period, Ai learned to use fourteen object sym-
bols, eleven color symbols and, most important for us, the first six Arabic numer-
als. When it was shown three red pencils, for instance, the chimp first pointed
toward a square symbol adorned with a black diamond, which conventionally
meant "pencil," then toward a diamond crossed by a horizontal bar ("red"), and
finally toward the written digit "3."

This sequence of gestures may have been only some elaborate form of rote
motor reflex. However, Matsuzawa showed that the drawings did, to some
extent, function like words that could, through their combinations alone,

Figure 1.7, The Japanese primatologist Matsuzawa taught his chimpanzee Ai a vocabulary of

visual signs, of which only a small subset is presented here. Ai could thus report the identity, the

color and the numerosity of small sets of objects. (After Matsuzawa, 1985; copyright © 1985 by

Macmillan Magazines Ltd.)
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describe novel situations. If, for instance, the chimpanzee was taught a new sym-
bol for "toothbrush," it "was partially able to apply it to novel contexts such as
"five green toothbrushes" or "two yellow toothbrushes." Still, this ability to gen-
eralize remained fraught with frequent errors.

Since 1985, when Matsuzawa first reported his results, his chimpanzee Ai has
made constant progress in arithmetic. It now knows the first nine digits and can
enumerate sets with 95% accuracy. Recordings of his response times suggest that,
like a human, Ai uses serial counting for numbers greater than 3 or 4. It has also
learned to order the digits according to their magnitude—although again, it took
years to establish this novel competence.

Since Matsuzawa's early experiments, the learning of numerical labels has
been replicated in several chimpanzees from at least three different primate train-
ing centers. Similar abilities have even been demonstrated in species much more
distant from us. Dolphins have been trained to associate arbitrary objects with
precise numbers of fish. After about two thousand trials, they were able to select,
among two objects, the one that was associated with the larger amount of fish.
Irene Pepperberg at the University of Arizona has taught her parrot Alex a large
vocabulary of English words, among which are the first few number words.
Experiments with Alex are quite remarkable in that signs or plastic tokens are
unnecessary: More or less standard English can be used to formulate oral ques-
tions, which the animal immediately answers by uttering recognizable words!
When it is presented with an array of objects comprising, for instance, green
keys, red keys, green toys, and red toys, Alex can answer questions as complex as
"How many red keys?" Naturally, his training took a long time—almost twenty
years. However, the results clearly prove that numerosity labeling is not exclusive-
ly a mammal's privilege.

In more recent work, chimpanzees have been shown to be partially able to
calculate using numerical symbols. Sarah Boysen, for instance, taught her chim-
panzee named Sheba to perform simple numerical additions and comparisons.
She started by teaching Sheba the quantities associated with the Arabic digits 0
through 9. Experiments of this kind require unfailing patience. For two years, the
animal was progressively exposed to increasingly complex tasks. At first, it simply
had to place one biscuit in each of the six squares of a checkerboard. It was then
shown sets of between one and three biscuits, and asked to select, among several
cards, the one that bore as many black marks as there were biscuits on the
checkerboard. It therefore learned to match a set of biscuits with a set of marks
by focusing only on their numerosity. In a third stage, the cards with marks were
progressively replaced with the corresponding Arabic digits. The chimp therefore
learned to recognize the digits 1, 2, and 3, and to point to the appropriate digit
when it saw the corresponding number of biscuits. Finally, in the last stage, Sarah
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Boysen taught her protege the converse: It had to choose, among several sets of
objects, the one whose numerosity matched a given Arabic digit.

Using similar strategies, the knowledge of the animal was progressively
extended to the entire set of digits, from 0 through 9. At the end of this training
period, Sheba could fluently move back and forth between a digit and the corre-
sponding quantity. This can be considered as the essence of symbolic knowledge.
A symbol, beyond its arbitrary shape, refers to a covert meaning. Symbol com-
prehension implies accessing this meaning from shape alone, while symbol pro-
duction requires recovering the arbitrary shape from knowledge of the intended
meaning. Obviously, the chimpanzee Sheba had managed, through long and
painstaking training, to master both of these transformations.

An important property of human symbols, though, is that they can be com-
bined into sentences whose meaning derives from the meaning of the constituent
words. Mathematical symbols, for instance, can be combined to express equa-
tions such as 2+2=4. Could Sheba also combine multiple digits into a symbolic cal-
culation? To find out, Boysen designed a symbolic addition task. She hid oranges
at several places in Sheba's cage—for instance, two oranges under a table and
three in a box. The chimpanzee first explored the various places where the
oranges might be hidden. Sheba then came back to the starting point and was
supposed to pick, among several Arabic digits, the one that matched the total
number of oranges found. From the very first trial, the animal succeeded. A sym-
bolic version of it was immediately tried. This time, as it wandered through the
cage, the animal did not discover oranges, but Arabic digits such as digit 2 under
the table and digit 4 in the box. Again, right from the start, the chimpanzee was
regularly able to report, when its exploration was over, the total of the digits that
it had seen (2+4=6). This implied that it could recognize each of the digits, associ-
ate them mentally with quantities, figure out the result of adding together all
these quantities, and finally retrieve the visual appearance of the corresponding
digit. Never had an animal come any closer to the symbolic calculation abilities
exhibited by humankind.

Even species far less clever that the chimpanzee can learn to perform elemen-
tary mental operations with numerical symbols. For instance, two macaques
named Abel and Baker, trained by David Washburn and Duane Rurnbaugh at
Georgia State University, have shown remarkable abilities for comparing the
numerical quantities conveyed by Arabic digits. Pairs of Arabic digits such as "2 4"
appeared on a computer screen. Using the joystick, the animal could choose one
digit. An automated dispenser then delivered a corresponding number of fruit
candies, a delicacy that primates are particularly fond of. If the animal chose digit
4, it could savor four candies, whereas if it selected digit 2, it would only get two.
The drive toward choosing the larger digit was therefore quite important. Indeed,
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the task was rather similar to the above-described comparison task, except that the
animal was not directly confronted with food, but only with a symbolic represen-
tation of its amount using Arabic digits. It had to retrieve from memory the mean-
ing of the digit symbols—namely, the quantity with which they were associated.

I should mention that Abel and Baker, unlike Sheba, had not received any
training with Arabic digits before the test started. This is why they needed several
hundred trials to learn to choose the larger digit with some regularity. Sheba,
who already knew the quantity associated with digits, answered correctly on the
very first trial of a similar number comparison task. After training, Abel and
Baker also succeeded very well. They made no mistakes at all when the digits
were sufficiently distant, but they failed up to 30% of the time when the digits dif-
fered by only one unit. We recognize here the now-familiar distance effect, which
reveals a tendency to confound quantities that are numerically close.

Following this performance with digit pairs, Abel and Baker went on success-
fully to triplets, quadruplets, and even quintuplets of digits between 1 and 9.
Clearly, the animals had not learned the answers to all possible pairs of digits by
rote. Even when they were presented with a new randomly ordered sets of digits,
such as "5 8 2 1," the animals picked out the larger digit with a much higher suc-
cess rate than chance alone would have predicted.

I cannot leave this topic without mentioning the curious difficulties that Sheba
met when she had to pick the smaller of two numbers. The experimental situation
seemed quite simple: The animal was shown two sets of food, and when it point-
ed to one, the experimenter gave it to another chimp while Sheba received the oth-
er food set. In this novel situation, it was in Sheba's interests to designate the
smaller quantity, so that she would then receive the larger one. However, the
chimpanzee never succeeded. She continued to point to the larger set, as if choos-
ing the maximum amount of food was an irrepressible response. Sarah Boysen
then thought of replacing the actual piles of food with the corresponding Arabic
digits. Immediately, from the first trial, Sheba chose the smaller digit! Numerical
symbols seemed to liberate Sheba from immediate material contingencies. They
enabled her to act without being influenced by the parasitic impulse that other-
wise compelled her to always pick out the larger amount of food.

The Limits of Animal Mathematics

How significant are such demonstrations of symbolic calculation in animals?
Should they be viewed simply as circus acts extorted at the expense of an inten-
sive training that turns animals into performing machines, but eventually tells us
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nothing about their normal abilities? Or are animals almost as gifted as humans
in their ability to do mathematics? Without diminishing the importance of the
above experiments, one is forced to admit that the mental manipulation of sym-
bolic numerical labels in animals remains an exceptional finding. Although I have
mentioned experiments with parrots, dolphins, and macaques, no cases of sym-
bolic addition are known in any species other than the chimpanzee. Even their
performance seems quite primitive when compared to that of a human child. It
took Sheba several years of trial and error before she could master the digits 0
through 9. In the end, the chimpanzee still made frequent errors in using them,
as did all the animals trained on number tasks. A young child, by contrast, spon-
taneously counts on its fingers, can often count up to 10 before the age of three,
and rapidly moves on to multidigit numerals whose syntax is much more com-
plex. The developing human brain seems to absorb language effortlessly—quite
the opposite of animals, which always seem to need hundreds of repetitions of
the same lesson before they retain anything.

What should we therefore remember about animal arithmetic? First, an un-
disputed and widespread ability to apprehend numerical quantities, to memorize,
to compare, and even to add them approximately. Second, a considerably lesser
ability, probably confined to a few species, for associating a repertoire of more or
less abstract behaviors, such as pointing to an Arabic digit, to numerical represen-
tations. These behaviors may eventually serve as labels for numerical quantities
—the "symbols." It is as if some animals could learn to grade the levels of the
internal accumulator that they use to represent numbers. A lengthy training peri-
od enables them to memorize a list of behaviors: If the level of the accumulator is
between x and y, then point to digit "2"; if it is between y and z, then point to dig-
it "3"; and so on. This may just be a list of conditioned behaviors that is only
remotely related to the extraordinary fluency that humans show when using the
word "two" in contexts as different as "two apples," "two and two equal four," or
"two dozen." While we may marvel at animals' ability to manipulate approxi-
mate representations of numerical quantities, teaching them a symbolic language
seems to go against their natural proclivities. Indeed, the acquisition of symbols
in animals never occurs in the wild.

From Animal to Human

Evolution is a conservative mechanism. When a useful organ emerges through
random mutations, natural selection works to pass it on to the next generations.
Indeed, the preservation of favorable traits is a major source of the organization
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of life. Therefore, if our closest cousins, the chimpanzees, possess some compe-
tence for arithmetic, and if species as different as rats, pigeons, and dolphins are
not devoid of numerical abilities, it is likely that we Homo sapiens have received a
similar heritage. Our brains, like the rat's, are likely to come equipped with an
accumulator that enables us to perceive, memorize, and compare numerical mag-
nitudes.

Many outstanding differences separate human cognitive abilities from those
of other animals, including chimpanzees. For one thing, we have an uncanny abil-
ity to develop symbol systems, including a mathematical language. We are also
endowed with a cerebral language organ that enables us to express our thoughts
and to share them with other members of our species. Finally, our ability to
devise intricate plans for actions, based on both a retrospective memory of past
events and a prospective memory of future possibilities, seems to be unique in
the animal kingdom. Does that mean, however, that in other respects, our cere-
bral hardware for number processing should be very different from that of other
animals? The simple working hypothesis that I am defending throughout this
book postulates that we are in fact endowed with a mental representation of
quantities very similar to the one that can be found in rats, pigeons, or monkeys.
Like them, we are able to rapidly enumerate collections of visual or auditory
objects, to add them, and to compare their numerosities. I speculate that these
abilities not only enable us to quickly work out the numerosity of sets, but also
underlie our comprehension of symbolic numerals such as Arabic digits. In
essence, the number sense that we inherit from our evolutionary history plays
the role of a germ favoring the emergence of more advanced mathematical abili-
ties.

In the next chapters, we will scrutinize human mathematical abilities, looking
for vestiges of the animal mode of apprehending numbers. The first and perhaps
the most dramatic cue that we will study is the remarkable competence of
human infants in arithmetic, long before they first sit in a classroom—in fact,
long before they can sit at all!



Babies Who
Count

The soul, as being immortal, and having been born again many

times, and having seen all things that exist, whether in this

world or in the world below, has knowledge of them all; and it

is no wonder that she should be able to call to remembrance all

that she ever knew about virtue, and about everything.

Plato, Meno

D
o babies have any abstract knowledge of arithmetic at birth? The question
seems preposterous. Intuition suggests that babies are virgin organisms
initially devoid of any kind of competence other than the ability to learn.

Yet if our working hypothesis is correct, the human brain is endowed with an
innate mechanism for apprehending numerical quantities, one that is inherited
from our evolutionary past and that guides the acquisition of mathematics. To
influence the learning of number words, this protonumerical module must be in
place before the period of exuberant language growth that some psychologists call
the "lexical explosion," which occurs around a year and a half of age. In the first
year of life, then, babies should already understand some fragments of arithmetic.

Baby Building: Piaget's Theory

Only over the last fifteen years has the subject of babies' numerical competence
been examined empirically. Before this period, developmental psychology was

4 1

Chapter 2
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dominated by constructivism, a view of human development that made the very
notion of arithmetic in the first year of life sound inconceivable. According to the
theory first set forth some fifty years ago by Jean Piaget, the founder of construc-
tivism, logical and mathematical abilities are progressively constructed in the
baby's mind by observing, internalizing, and abstracting regularities about the
external world. At birth, the brain is a blank page devoid of any conceptual
knowledge. Genes do not grant the organism any abstract ideas about the envi-
ronment in which it will live. They merely instill simple perceptual and motor
devices and a general learning mechanism that progressively takes advantage of
the interactions of the subject with its environment to organize itself.

In the first year of life, according to constructivist theory, children are in a
"sensorimotor" phase: they explore their environment through the five senses,
and they learn to control it through motor actions. In this process, Piaget argues
that children cannot fail to notice certain salient regularities. For instance, an
object that disappears behind a screen always reappears when the screen is low-
ered; when two objects collide, they never interpenetrate; and so on. Guided by
such discoveries, babies progressively construct a series of ever more refined and
abstract mental representations of the world in which they are growing up. In
this view, then, the development of abstract thought consists in climbing a series
of steps in mental functioning, the Piagetian stages, that psychologists may iden-
tify and classify.

Piaget and his colleagues speculated a good deal about how the concept of
number develops in young children. They believed that number, like any other
abstract representation of the world, must be constructed in the course of senso-
rimotor interactions with the environment. The theory goes something like this:
Children are born without any preconceived idea about arithmetic. It takes them
years of attentive observation before they really understand what a number is. By
dint of manipulating collections of objects, they eventually discover that number
is the only property that does not vary when objects are moved around or when
their appearance changes. Here is how Seymour Papert, in 1960, described this
process:

For the infant, objects do not even exist; an initial structuration is needed to
organize experience into things. Let us stress that the baby does not discover
the existence of objects like an explorer discovers a mountain, but rather like
someone discovers music: he has heard it for years, but before then it was only
noise to his ears. Having "acquired objects," the child still has a long way to go
before reaching the stage of classes, seriations, inclusions and, eventually,
number.
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Piaget and his many collaborators had seemingly collected proof upon proof
of young children's inability to understand arithmetic. For instance, if you hide a
toy under a cloth, ten-month-old babies fail to reach for it—a finding that Piaget
thought meant that babies believe that the toy ceases to exist when it is out of
sight. Would this apparent lack of "object permanence," in Piagetian jargon, not
imply that babies are fully ignorant of the world they live in? If they do not realize
that objects continue to exist when they are out of sight, how could they ever
know anything about the more abstract and evanescent properties of number?

Other observations by Piaget seemed to indicate that the number concept
does not begin to be understood before the ages of four or five. Before then, chil-
dren fail in what Piaget called the "number conservation" test. First, they are
shown equally spaced rows of six glasses and six bottles. If they are now asked
whether there are more glasses or more bottles, children will reply, "It's the same
thing." They apparently rely on the one-to-one correspondence between objects
in the two rows. The row of glasses is then spread so that it becomes longer than
the row of bottles. Obviously, number is not affected by this manipulation. Yet
when the earlier question is repeated, children now systematically respond that
there are more glasses than bottles. They do not seem to realize that moving the
objects around leaves their number unchanged. Psychologists would say that they
do not "conserve number."

When children eventually pass the number conservation test, constructivists
still do not grant them much conceptual understanding of arithmetic. Until they
are seven or eight, it is still easy to entrap them with simple numerical tests. Show
them, for instance, a bunch of eight flowers with six roses and two tulips, and ask
them a silly question: Are there more roses or more flowers? Most of them will
tell you that the roses are more numerous than the flowers! And Piaget readily
concludes that prior to the age of reason, children lack knowledge of the most
elementary bases of set theory, which many mathematicians believe to provide a
foundation for arithmetic: They seemingly ignore that a subset cannot have more
elements than the original set from which it was drawn.

Piaget's findings have had a considerable impact on our education system. His
conclusions have instilled a pessimistic attitude and a wait-and-see policy among
educators. The theory states that the regular climbing of Piagetian stages pro-
gresses according to an immutable process of growth. Before the age of six or
seven, the child is not "ready" for arithmetic. Hence, precocious teaching of
mathematics is a vain or even harmful enterprise. If it is taught early on, the
number concept cannot but be distorted in kids' heads. It will have to be learned
by rote, without any genuine understanding. Failing to grasp what arithmetic is
about, children will develop a strong feeling of anxiety about mathematics.
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According to Piagetian theory, it is best to start by teaching logic and the ordering
of sets, because these notions are a prerequisite to the acquisition of the concept
of number. This is the main reason why, even today, children in most preschools
spend much of their day piling up cubes of decreasing sizes, long before they
learn to count.

Is such pessimism reasonable? We have seen that rats and pigeons readily rec-
ognize a certain number of objects, even as their spatial configuration varies. We
know already that a chimp will spontaneously choose the larger of two numerical
quantities. Is it conceivable that human children before the age of four or five lag
so far behind other animals in arithmetic?

Piaget's Errors

We now know that this aspect of Piaget's constructivism was wrong. Obviously,
young children have much to learn about arithmetic, and obviously their concep-
tual understanding of numbers deepens with age and education—but they are
not devoid of genuine mental representations of numbers, even at birth! One
merely has to test them using research methods tailored to their young age.
Unfortunately the tests that Piaget favored do not enable children to show what
they are really capable of. Their major defect lies in their reliance on an open dia-
log between experimenters and their young subjects. Do children really under-
stand all the questions that they are being asked? Most important, do they
interpret these questions as adults would? There are several reasons to think not.
When children are placed in situations analogous to those used with animals and
when their minds are probed without words, their numerical abilities turn out to
be nothing less than considerable.

Take, for instance, the classical Piagetian test of number conservation. As ear-
ly as 1967, in the prestigious scientific journal Science, Jacques Mehler and Tom
Bever, then at the department of psychology at MIT, demonstrated that the
results of this test changed radically according to context and to the children's lev-
el of motivation. They showed the same children, two to four years old, two
series of trials. In one—similar to the classical conservation situation—the
experimenter set up two rows of marbles. One row was short but consisted of six
marbles, and the other, although longer, had only four marbles (Figure 2.1).
When the children were asked which row had more marbles, most three- and
four-year-olds got it wrong and selected the longer but less numerous row. This
recalls Piaget's classical nonconservation error.
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Figure 2.1. When two rows of items are in perfect one-to-one correspondence (left panel), a three-

or four-year-old child states that they are equal. If one now transforms the bottom row both by

shortening it and by adding two items (right panel), the child declares that the top row has more

items. This is the classical error first discovered by Piaget: The child responds on the basis of row

length rather than number. Yet when the rows are made up of M&Ms, Mehler and Bever (1967)

proved that children spontaneously choose the bottom row. Hence, the Piagetian error is not

imputable to children's incompetence in arithmetic, but merely to the disconcerting conditions of

number conservation tests. (After Mehler and Bever, 1967.)

In the second series of trials, however, Mehler and Bever's ruse consisted in
replacing marbles with palatable treats (M & Ms). Instead of being asked compli-
cated questions, the children were allowed to pick up one of the two rows and
consume it right away. This procedure had the advantage of sidestepping lan-
guage comprehension difficulties while increasing the children's motivation to
choose the row with the most treats. Indeed, when candy was used, a majority of
children selected the larger of the two numbers, even when the length of the
rows conflicted with number. This provided a striking demonstration that their
numerical competence is no more negligible than their appetite for sweets!

That three- and four-year-old children select the more numerous row of can-
dy is perhaps not very surprising, even though it conflicts directly with Piaget's
theory. But there is more. In Mehler and Bever's experiment, the youngest chil-
dren, who were about two years old, succeeded perfectly in the test, both with
marbles and with M&Ms. Only the older children failed to conserve the number
of marbles. Hence, performance on number conservation tests appears to drop
temporarily between two and three years of age. But the cognitive abilities of
three- and four-year-olds are certainly not less well-developed than those of two-
years-olds. Hence, Piagetian tests cannot measure children's true numerical com-
petence. For some reason, these tests seem to confuse older children to such an
extent that they become unable to perform nearly as well as their younger broth-
ers and sisters.

I believe that what happens is this: Three- and four-year-olds interpret the
experimenter's questions quite differently from adults. The wording of the ques-
tions and the context in which they are posed mislead children into believing that
they are asked to judge the length of the rows rather their numerosity. Remem-
ber that, in Piaget's seminal experiment, the experimenter asks the very same
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question twice: "Is it the same thing, or does one row have more marbles?" He
first raises this question when the two rows are in perfect one-to-one correspon-
dence, and then again after their length has been modified.

What might children think of these two successive questions? Let us suppose
for a moment that the numerical equality of the two rows is obvious to them.
They must find it quite strange that a grown-up would repeat the same trivial
question twice. Indeed, it constitutes a violation of ordinary rules of conversation
to ask a question whose answer is already known by both speakers. Faced with
this internal conflict, perhaps children figure out that the second question,
although it is superficially identical to the first, does not have the same meaning.
Perhaps something like the following reasoning goes on in their heads:

If these grown-ups ask me the same question twice, it must be because they
are expecting a different answer. Yet the only thing that changed relative to the
previous situation is the length of one of the rows. Hence, the new question
must bear on the length of the rows, even though it seems to bear on their
number. I guess I'd better answer on the basis of row length rather than on the
basis of number.

This line of reasoning, although quite refined, is well within the reach of
three- and four-year-olds. In fact, unconscious inferences of this type underlie the
interpretation of a great many sentences, including those that a very young child
may produce or comprehend. We all routinely perform hundreds of inferences of
this sort. Understanding a sentence consists in going beyond its literal meaning
and retrieving the actual meaning initially intended by the speaker. In many cir-
cumstances, the actual meaning can be the direct opposite of the literal sense. We
speak of a good movie as being "not too bad, isn't it?" And when we ask, "Could
you pass the salt?" we are certainly not satisfied when the answer is a mere "yes"!
Such examples demonstrate that we constantly reinterpret the sentences that we
hear by performing complex unconscious inferences concerning the other speak-
er's intentions. There is no reason to think that young children are not doing
the same when they converse with an adult during these tests. In fact, this
hypothesis seems all the more plausible since it is precisely around three or four
years of age—the point at which Mehler and Bever find that children begin not
to conserve number—that the ability to reason about the intentions, beliefs, and
knowledge of other people, which psychologists call a "theory of mind," arises in
young children.

Two developmental psychologists from the University of Edinburgh, James
McGarrigle and Margaret Donaldson, directly tested the hypothesis that chil-
dren's failure to "conserve number" on Piagetian tests is linked to their misunder-
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standing of the experimenter's intentions. In their experiment, half of the trials
were of the classical type, where the experimenter modified the length of one
row and then asked, "Which has more?" In the other half of the trials, however,
the length transformation was performed fortuitously by a teddy bear. While the
experimenter was conveniently looking elsewhere, a teddy bear lengthened one
of the two rows. The experimenter then turned and exclaimed, "Oh no! The silly
teddy bear has again mixed up everything." Only then did the researcher again
ask the question "Which has more?" The underlying idea was that, in this situa-
tion, this query seemed sincere and could be interpreted in a literal sense. Since
the bear had messed up the two rows, the adult did not know anymore how
many objects there were and hence was asking the child. In this situation the vast
majority of children responded correctly on the basis of number, without being
influenced by row length. The same children, however, failed by systematically
responding on the basis of length when the transformation was performed inten-
tionally by the experimenter. This proves two points: First, even a young child is
capable of interpreting the same exact question in two quite different ways
depending on context. Second, Piaget notwithstanding, when the question is
asked in a context that makes sense, young children get the answer right—they
can conserve number!

I would not want to leave this discussion on a misunderstanding. I certainly do
not consider the children's failure on Piagetian conservation tasks to be a trivial
matter. On the contrary, this is an active domain of research that still attracts many
researchers throughout the world. After hundreds of experiments, it is still unclear
exactly why children are so easily deceived by fallacious cues such as row length
when they have to judge number. Some scientists think that failure on Piagetian
tasks reflects the continuing maturation of the prefrontal cortex, a region of the
brain that enables us to select a strategy and to hold firm to it despite distraction.
If this theory turns out to be correct, Piagetian tests could take on a new meaning
as a behavioral marker of children's ability to resist distraction. However, devel-
oping such ideas would be the matter of another book. My purpose, here, is
more modest. My sole objective is to convince you that we now know what
Piagetian tests are not about. Contrary to what their inventor thought, these are
not good tests of when a child begins to understand the concept of number.

Younger and Younger

The experiments that I have described so far challenge the Piagetian time scale
for numerical development by suggesting that children "conserve number" at a
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much earlier age than was once thought possible. Yet do they refute the whole of
constructivism? Not really. Piaget's theory is much more subtle than I can possi-
bly describe in a few paragraphs, and it allows several ways in which he might
have accommodated the above results.

He might have argued, for instance, that by removing some of the conflicting
cues from his original number conservation test, the modified experiments made
the children's task too simple. Piaget was well aware that his number conserva-
tion test misled children—in fact it was purposely designed so that row length
conflicted with number. In his view, children really mastered the conceptual
underpinnings of arithmetic only when they could predict which row had the
most items on a purely logical basis, by reflecting on the logical consequences of
the operations that had occurred, and without letting themselves be distracted by
irrelevant changes in row length or in the way the experimenter phrased the
questions. Resistance to misleading cues, it seems, was part and parcel of Piaget's
definition of what it meant to have a conceptual understanding of number.

Piaget might also have argued that choosing the largest number of candy does
not require a conceptual understanding of number, but only a sensorimotor coor-
dination that allows the child to recognize the greater pile and orient to it.
Throughout his work, Piaget ceaselessly stressed young children's sensorimotor
intelligence, so he might well have happily accepted that children discovered the
"choose-the-larger" strategy at an early age. He would have insisted, however,
that this strategy was used without any understanding of its logical basis; only
later, he claimed, would children reflect on their sensorimotor abilities and arrive
at a more abstract construal of number. Typical of this attitude is Piaget's reac-
tion when he heard about Otto Koehler's work on perception of numerosity in
birds and squirrels—he accepted that animals could acquire "sensorimotor num-
bers," but not a conceptual understanding of arithmetic.

Before the 1980s, the experiments that challenged Piaget's theory did not real-
ly address his central hypothesis that babies were devoid of a genuine concept of
number. After all, the youngest children who sat for Mehler and Bever's marble
test were already two years old. This still left a long time for learning to have tak-
en place. In this context, scientific studies of infants suddenly became of para-
mount theoretical importance. Could it be shown that even babies under one
year of age already mastered some aspects of the number concept, before they
had had any chance of abstracting them from interactions with the environment?
The answer is yes. In the 1980s, numerical abilities were observed in six-month-
old infants and even in newborns.

Obviously, in order to reveal numerical competence at such an early age, ver-
bal questioning will not do. Scientists have therefore relied on babies' appeal for
novelty. Any parent knows that when a baby sees the same toy over and over
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again, it eventually loses interest in it. At this point, introducing a new toy can
revive its interest. This elementary observation—which is obviously in need of
being replicated in the laboratory and in a tightly controlled situation—proves
that the child has noted the difference between the first and the second toy. This
technique can be extended to ask babies all sorts of questions. It is in this way that
researchers have been able to demonstrate that, very early in life, babies and even
newborns can perceive differences in color, shape, size, and, more to the point,
number.

The first experiment to establish that babies recognize small numbers took
place in 1980 in Prentice Starkey's laboratory at the University of Pennsylvania. A
total of 72 babies, aged between 16 and 30 weeks, were tested. Each baby, seated
on its mother's lap, faced a screen on which slides were projected (Figure 2.2). A
video camera focusing on the babies' eyes filmed its gaze, enabling an associate,
who was blind to the exact conditions of the experiment, to measure exactly how
long the baby spent looking at each slide. When the baby started looking else-
where, a new slide appeared on the screen. Initially, the content of the slides was
essentially the same: two large black dots, more or less spread out horizontally
from trial to trial. In the course of trials, the baby started to look more and more
briefly at this repetitive stimulus. The slides were then changed without
warning to new slides containing three black dots. Immediately, the baby started
to fixate longer at these unexpected images. The fixation time, which was 1.9 sec-

Figure 2.2, To prove that infants discriminate the numerosities 2 and. 3, they are first repeatedly

shown collections with a fixed number of items, say two (left). Following this habituation phase,

infants look longer at collections of three items (right) than at collections of two items. Because

object location, size, and identity vary, only a sensitivity to numerosity can explain infants'

renewed attention. (Top, stimuli used by Starkey and Cooper 1980; bottom, stimuli similar to those

used by Strauss and Curtis 1981.)
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onds just prior to the switch, jumped to 2.5 seconds on the very first new slide.
Hence, the baby detected the switch from two dots to three dots. Other children,
tested in the same manner, detected the switch from three to two dots. Initially,
these experiments were performed with six- or seven-month-olds, but a few years
later Sue Ellen Antell and Daniel Keating, from the University of Maryland in
Baltimore County, demonstrated with a similar technique that even newborns
could discriminate numbers 2 and 3 a few days after birth.

How can one make sure that it is really the change in number that is noticed
by the babies, rather than any other physical modification of the stimulus? In
their initial experiments, Starkey and Cooper had aligned the dots so that the
global figure that they formed provided no cue to number (in other arrange-
ments, number is often confounded with shape because two dots form a line and
three dots a triangle). They also varied the spacing between the dots so that nei-
ther their density, nor the total length of the line, would suffice to discriminate 2
from 3. Later, Mark Strauss and Lynne Curtis, at the University of Pittsburgh,
introduced an even better control. They simply used color photographs of com-
mon objects of all kinds. The objects were small or large, aligned or not, and
were photographed from near or far. Only their number remained constant:
There were two objects in one half of the experiment, and three in the other. Not
the least affected by such variability in all the possible physical parameters, the
babies continued to notice the change in number. More recently, the experiment
has even been replicated by Eric Van Loosbroek and Ad Smitsman, two psycholo-
gists from the Catholic University of Nijmegen in the Netherlands, with moving
displays—random geometrical shapes that occasionally hide one another in the
course of their trajectory. In the first few months of life, babies appear to notice
the constancy of objects in a moving environment and extract their numerosity.

Babies' Power of Abstraction

It remains to be seen whether this precocious sensitivity to numerosity merely
reflects the power of the babies' visual system, or whether it betrays a more
abstract representation of number. With very young children, we have to ask the
very same questions as those raised with rats and chimpanzees. Are they able to
extract the number of tones in an auditory sequence, for instance? Most impor-
tant, do they know that the same abstract concept "3" applies to three sounds and
to three visual objects? Finally, can they mentally combine their numerical repre-
sentations to perform elementary calculations such as 1 +1 =2?

To answer the first question, scientists simply moved the original experiments
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on the visual recognition of number to the auditory modality. They bored babies
by repeating sequences of three sounds over and over again, and then ascertained
whether a later novel sequence of two sounds was able to renew their interest.
One of these experiments is especially instructive because it suggests that, as ear-
ly as four days of age, a baby can decompose speech sounds into smaller units—
syllables—that it can then enumerate. But at such a young age, it is easier to use
sucking rhythm rather than gaze orientation as an experimental tool. So Ranka
Bijeljac-Babic and her colleagues at the Laboratory for Cognitive Science and
Psycholinguistics in Paris have babies suck on a nipple connected to a pressure
transducer and a computer. Whenever the baby sucks, the computer notices it
and immediately delivers a nonsense word such as "bakifoo" or "pilofa" through
a loudspeaker. All the words share the same number of syllables—three, for
instance. When a baby is first placed in this peculiar situation where sucking
yields sound, it shows an increased interest which is translated into an elevated
sucking rate. After a few minutes, however, sucking drops. As soon as the com-
puter detects this drop, it switches to delivering words with only two syllables.
The baby's reaction: It immediately goes back to sucking vigorously in order to
listen to the new word structure. To ensure that this reaction is related to the
number of syllables rather than to the mere presence of novel words, with some
babies novel words are introduced while the number of syllables is left
unchanged. In this control group, no reaction is perceptible. Since the duration of
words and the rate of speech are highly variable, the number of syllables is
indeed the only parameter that can enable babies to differentiate the first list of
words from the second.

Very young children therefore pay equal attention to the number of sounds as
to the number of objects in their environment. We also know, thanks to a recent
experiment by Karen Wynn, that at six months of age they will discriminate
numbers of actions, such as a puppet making two jumps versus three jumps. Yet
are they aware of the "correspondence" between sound and sight, to paraphrase
the French poet Baudelaire? Do they anticipate that three strokes of lightning
should predict an equal number of thunderclaps? In brief, do they access an
abstract representation of number, independent of the visual or auditory modali-
ty that mediates it? Thanks to remarkably clever experiments designed by
American psychologists Prentice Starkey, Elizabeth Spelke, and Rochel Gelman,
we can now give a positive answer to this question. I rank their work highly on
my personal pantheon of experimental psychology because only fifteen years ago
it would have seemed virtually impossible to ask such a complex question about a
baby's mind.

In this multimedia experiment, a six-, seven-, or eight-month-old baby is seat-
ed in front of two slide projectors. On the right, the slide shows two common
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objects, randomly arranged. On the left, a similar slide shows three objects.
Simultaneously, the baby hears a sequence of drum beats played by a central
loudspeaker placed between the two screens. Finally, as usual the baby is watched
by a hidden video camera that enables experimenters to measure how much time
the baby spends looking at each slide.

Initially, the baby is attentive and explores the images visually. Obviously
those with three objects are more complex than those with only two, so the baby
dedicates a little more time and attention to them. After a few trials, however, this
bias fades, and a fascinating result emerges: The baby looks longer at the slide
whose numerosity matches the sequence of sounds that it is hearing. It consis-
tently looks longer at three objects when hearing three drumbeats, but now
prefers to watch two objects when hearing two drumbeats.

It therefore seems likely that the baby can identify the number of sounds—
even though it varies from trial to trial—and is capable of comparing it to the
number of objects before its eyes. If the two numbers are mismatched, the baby
decides not to delve any longer into this slide, but rather to take a peek at the oth-
er one. The very fact that a child only a few months of age applies a strategy as
sophisticated as this implies that its numerical representation is not tied to a low
level of visual or auditory perception. The simplest explanation is that the child
really perceives numbers rather than auditory patterns or geometrical configura-
tions of objects. The very same representation of number "3" seems to fire in its
brain whether it sees three objects or hears three sounds. This internal, abstract
and amodal representation enables the child to notice the correspondence
between the number of objects on one slide and the number of sounds that are
simultaneously heard. Remember that animals behave in a very similar way:
They too seem to possess neurons that respond equally well to three sounds or
three light flashes. Babies' behavior may well reflect an abstract module for num-
ber perception, implanted by evolution ages ago, deep within the animal and
human brains.

How Much Is 1 plus 1?

Let us momentarily pursue the comparison between the behavior of babies and
that of other animal species. We have seen in the preceding chapter that a chim-
panzee can compute the approximate total of a simple addition such as two
oranges plus three oranges. Might this also be true of young infants? At first sight,
this seems a rather daring hypothesis. We are more inclined to think that the
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acquisition of mathematics starts in the preschool years. It was not until the 1990s

that a question as iconoclastic as the existence of calculation abilities in the first

year of life received an empirical evaluation. By then, the scientific community

had been sufficiently prepared by the many experiments on numerical percep-
tion, both in infants and in animals, for an experiment of this type to be attempt-

ed and for its results to receive attention.
In 1992, Karen Wynn's famous article on addition and subtraction by four- and

five-month-old infants appeared in the journal Nature. The young American scien-
tist had employed a simple yet ingenious design that relied on infants' ability to

detect physically impossible events. Several earlier experiments had shown that, in
their first year of life, infants express strong puzzlement when they witness "mag-
ical" events that violate the fundamental laws of physics. For instance, if they see

an object remain mysteriously suspended in midair after losing its support, babies
watch this scene with incredulous attention. Likewise, they express surprise when

a scene suggests that two physical objects occupy the same location in space.
Finally, if one hides an object behind a screen, babies find it astounding not to see

it again when the screen later drops. In passing, note that this observation proves
that, as early as five months and contrary to Piaget's theory, "out of sight" is not
"out of mind." We now know that the failure of children under one year in

Piaget's object permanence task is linked to the immaturity of their prefrontal
cortex, which controls their reaching movements. The fact that they can't reach
properly toward a hidden object does not imply that they believe it to be gone.

In all such situations, infants' surprise is demonstrated by a significant in-
crease in the amount of time they spend examining the scene, relative to a con-

trol situation in which the laws of physics have not been violated. Karen Wynn's
knack resides in adapting this idea to probe infants' number sense. She showed

them events that could be interpreted as numerical transformations—for

instance, one object plus another object—and tested whether infants expect the
precise numerical outcome of two objects.

Upon arrival in the laboratory, the five-month-old participants discovered a lit-
tle puppet theater with a rotating screen up front (Figure 2.3). The hand of the
experimenter came out on one side, holding a toy Mickey Mouse, which it placed
on stage. Then the screen came up, masking the location of the toy. The hand

appeared on the scene a second time with a second Mickey Mouse, deposited it
behind the screen and left empty. The entire sequence of events stood for a con-
crete depiction of the addition 1 +1: Initially, there was only one toy behind the
screen, and then a second one was added. Children never saw the two toys
together, but only one after the other. Would they have inferred, nevertheless,
that there should be two Mickeys behind the screen?
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Figure 2.3. Karen Wynn's experiment shows that 41/2-month-olds expect 1 plus 1 to make 2.

First, a toy is hidden behind a screen. Then a second identical toy is added. Finally, the screen

drops, sometimes revealing the two toys, and sometimes only one (the other toy having been sur-

reptitiously taken away). Infants look systematically longer at the impossible event "1+1=1"

than at the possible one "1 +1 =2," suggesting that they were expecting two objects. (Adapted from

Wynn, 1992.)

To figure this out, the screen was lowered, revealing an unexpected result:
Only one Mickey could be seen! Unbeknownst to the subjects, one of the two
toys had been removed through a hidden trap door. In order to estimate the
infants' degree of surprise, the time that they spent fixating this impossible situa-
tion "1 + 1 = 1" was measured and compared to the fixation time for the expected
outcome of two objects ("1 + 1=2"). On average, infants looked one second longer
at the false addition 1 + 1=1 than at the possible event 1 +1 =2. One might still object
that the kids were not really computing additions, but were simply looking
longer at a single object than at two identical ones. However, this explanation is
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not tenable, because the results were reversed in a second group of babies who
were presented with the operation 2-1 instead of 1 +1. In this group, the babies
were now surprised to discover two objects behind the screen (2-1=2), and they
examined this situation as much as three seconds longer than the possible event
2-1=1.

As Wynn herself observes, if one wants to play the devil's advocate, these
results still need not imply that babies can perform exact computations. They
may just know that the numerosity of a set changes when objects are added or
removed. Hence, they might figure out that 1 + 1 cannot possibly equal 1, nor 2-1
equal 2, without necessarily knowing the exact result for these operations. Yet
even this contrived explanation does not stand up to empirical testing. One mere-
ly has to replicate the addition situation 1 +1 with outcomes of either two or three
objects. Karen Wynn ran this replication and observed that, again, five-month-old
babies looked longer at the impossible outcome of three objects than at the possi-
ble outcome of two objects. The demonstration is irrefutable: Babies know that
1 + 1 makes neither 1 nor 3, but exactly 2.

This knowledge puts infants on a par with the rats we looked at, or with
Sheba, the chimp prodigy whose computing abilities were described in the previ-
ous chapter. In fact, the exact design of Karen Wynn's experiment has now been
replicated by Harvard psychologist Mark Hauser with rhesus monkeys in the
wild. When a monkey, intrigued by Hauser's presence, volunteered to look at
him, Hauser successively hid two eggplants in a box. Then, in some trials only, he
sneaked one off before opening the box, while a colleague filmed the animal to
measure its degree of surprise. The results of this wild scene were important and
fascinating. The monkeys reacted even more strongly than babies: On the "mag-
ic" trials in which one of the expected eggplants was missing, they spent consider-
able time scrutinizing the box. Obviously, human infants are at least as gifted as
their animal cousins in arithmetic, confirming that elementary numerical com-
putations can be performed by organisms devoid of language.

Still, Karen Wynn's experiments give no clue as to how abstract infants' knowl-
edge really is. Infants may keep a vivid and realistic image of the objects hidden
behind the screen—a kind of mental photograph sufficiently precise for them to
immediately notice any missing or supernumerary objects. Alternatively, they
may only keep a memory of the number of objects added to or subtracted from
behind the screen, without caring about their location and identity. To find out,
one may prevent children from building a precise mental model of the objects'
location and identity, and see whether they can still anticipate their number. This
idea has served as the basis for an experiment recently conducted by Etienne
Koechlin in our laboratory in Paris. The design is quite similar to Wynn's studies,
except that objects are now placed on a slowly rotating turntable that keeps them
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in constant motion even when they are hidden behind the screen. It is therefore
impossible to predict where they will be when the screen drops. Babies cannot
conjure up a precise mental image of the predicted scene; all they can construct is
an abstract representation of two rotating objects with unpredictable locations.

The results, amazingly, show that four-and-a-half-month-old infants are not in
the least confused by object motion. They still find the impossible events 1 + 1=1
and 2-1=2 surprising. Hence their behavior does not depend crucially on the
expectation of precise object locations. They do not expect to find a precise con-
figuration of objects behind the screen, but merely two objects—no more, no
less. A psychologist at the Georgia Institute of Technology, Tony Simon, and his
colleagues have even shown that infants do not attend to the exact identity of the
objects behind the screen when computing their number. Unlike older children,
four- and five-month-olds are not surprised much by changes in object appear-
ance in the course of arithmetical operations. If two Mickey Mouse toys are
placed behind the screen, they are not shocked to discover two red balls instead of
the original toys when the screen drops. Yet their attention is highly aroused if
only one ball is to be seen. Mickey Mouse turning into a ball, or the toad changing
into a prince, is an acceptable transformation as far as the baby's number process-
ing system is concerned. As long as no object vanishes or is created de novo, the
operation is judged to be numerically correct and yields no surprise reaction in
babies. In contrast, the disappearance of an object or its inexplicable replication,
as in the miracle of the loaves and fishes, seems miraculous because it violates our
deepest numerical expectations. Not only is keeping track of a small number of
objects child's play, but the child's number sense is sufficiently sophisticated to
avoid being deceived by object motion or by sudden changes in object identity.

The Limits of Infant Arithmetic

I hope that these experiments have convinced you that young children have nat-
ural talent for numbers. This does not mean, however, that you should enroll
your youngest toddler in evening math classes. Neither do I recommend consult-
ing a child neurologist if your kids make astronomical mistakes in elementary
additions. Shame on me if my rebuttal of Piaget has served as a pretext for the
charlatans who claim they can arouse intelligence in the first year of life by pre-
senting infants with additions written in Arabic digits or even with Japanese char-
acters, which they are of course totally unable to understand. While young
children's numerical abilities are real, they are strictly limited to the most elemen-
tary of arithmetic.
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In the first place, their abilities for exact calculation do not seem to extend
beyond the numbers 1, 2, 3, and perhaps 4. Whenever experiments involve sets of
two or three objects, infants are found to discriminate them. However, only occa-
sionally are they shown to differentiate three versus four. And never can a group
of babies under one year of age distinguish four dots from five or even from six.
Apparently, babies only have an accurate knowledge of the first few numbers.
Their competence, in this domain, may well be inferior to that of adult chim-
panzees, whose performance remains above chance even when they have to
choose between six versus seven pieces of chocolate.

Let us not jump too quickly to the conclusion that number 4 marks the con-
fines of the baby's arithmetic universe. The experiments available to date have
concentrated on the exact representation of small integers in the baby's mind.
Babies, however—like rats, pigeons, or monkeys—most likely possess only an
approximate and continuous mental representation of numbers. This representa-
tion probably obeys the distance and size effects found in rats and in chim-
panzees. We should therefore expect babies to be unable, beyond some limit, to
discriminate a number n from its successor n+1. This is indeed what is observed
beyond number 4. However, we should also expect them to recognize num-
bers beyond this limit, provided that they are contrasted with even more distant
numbers. Thus, babies may not know whether 2+2 is 3, 4, or 5, yet they may still
be surprised if they see a scene suggesting that 2+2 is 8. To my knowledge, this
prediction has not yet been put to a test. If proved correct, it would considerably
extend the numerical knowledge attributed to very young children.

Baby arithmetic has a second major limitation. In situations where an adult
would automatically infer the presence of several objects, babies do not necessar-
ily draw the same conclusion. Let me explain. Suppose that you alternatively see
a small red truck and then a green ball popping out from behind a screen. You
would immediately conclude that at least two objects are hiding there, and you
would be much puzzled to discover only one object, say the green ball, when the
screen is removed. Young children react differently. Whether one or two objects
are visible when the screen drops, ten-month-old infants do not show any sign of
surprise. Apparently, babies do not consider the fact that quite different shapes
and colors alternatively corne out from behind the screen as a sufficient clue to
the presence of several objects. Babies fail even when the experiment is per-
formed with highly familiar objects such as the subjects' own bottle or their
favorite doll. Only at twelve months of age do they start to expect two objects.
Even then, the experiment works only with objects of different shapes. If only
color or size varies, even a twelve-month-old thinks that seeing a large ball pop-
ping out of one side of a screen and a small one on the other side is not sufficient
to infer the presence of two different objects behind the screen.
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Figure 2.4. Infants' numerical expectations are based on object trajectory, not on object identity.

In the top situation, a duck and a truck alternately appear at the right and left of a screen. Despite

the change in object identity, infants show no surprise when the screen drops and reveals a single

object. In the bottom situation, a window is cut in the screen, making it physically impossible for

an object to move from right to left without appearing in this window for a short while. In this sit-

uation, infants expect two objects and are surprised if only one is found when the screen drops.

(Adapted from Xu and Carey, 1996.)

The only clue that babies seem to find conclusive is the trajectory followed by
objects (Figure 2.4). Thus, when the same experiment is repeated with not just
one, but two screens separated by a void, if an object alternatively pops out from
the right screen and from the left screen, babies infer the presence of two objects,
one behind each screen. They know that it would be impossible for a single
object to move from one screen to the other without appearing even for a short
moment in the space separating them. If, however, an object does appear in this
space at the appropriate time, then the babies' preference switches, and they
again expect only one object. And conversely, if there is only one screen but the
babies are shown the two objects together on the stage for only two seconds at
the beginning of the experiment, then they expect to find two objects at the end.

5 8
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Information about the spatial trajectories of objects thus provides a crucial
cue to numerosity perception. Note that this conclusion does not contradict in
any way the results of the turntable experiment I described above, which showed
that babies did not care whether the objects behind the screen moved or stood
still. In fact, there is every reason to believe that in that experiment too, trajectory
information is crucial. In the "1+1=2" condition, for instance, just after a first
Mickey Mouse toy has been placed on the turntable behind the screen, an identi-
cal toy appears in the experimenter's hand to the right of the screen. It is physical-
ly impossible for it to be the same toy as before, for this toy could not possibly
leave from behind the screen without being seen. Hence, infants conclude that
there is a second Mickey superficially identical to the first—and therefore expect
a total of two objects. It does not matter if the toys are subsequently moved
around until their locations are unpredictable. Once the abstract representation
of "2" has been activated, it can resist this type of modification. Spatial informa-
tion about the location of discrete objects in space and time is critical to set up the
representation of number in the baby's brain; but it is not needed once this repre-
sentation has been activated.

In summary, babies' numerical inferences seem to be completely determined
by the spatiotemporal trajectory of objects. If the motion that they see could not
possibly be caused by a single object without violating the laws of physics, they
draw the inference that there are at least two objects. Otherwise, they stick to the
default hypothesis that there is only one object, even if that implies that the
object is constantly changing in shape, size, and color. Thus, the baby's numerical
module is both hypersensitive to information about object trajectory, location,
and occlusion, and completely blind to changes in shape or color. Never mind the
identity of the object; only location and trajectory matter.

Only a rather foolish detective neglects half of the available cues. Because we
have been accustomed to a much higher standard of performance in babies,
however, we have to ask whether this strategy is not more clever than it appears.
Is the baby's line of reasoning deficient, or does it attest, on the contrary, a wis-
dom worthy of a Sherlock Holmes? After all, everyone knows that a criminal can
disguise himself to be a number of different people. Such is also the case with
many common objects whose aspect varies. The profiles and faces of people, for
instance, are very dissimilar visual objects, yet babies have to learn that they are
merely different views of the same persons. How could a child know beforehand
that a truck cannot turn itself into a ball, while a tiny piece of red rubber readily
transforms itself into a big pink balloon when someone blows in it? This kind of
anecdotal information cannot be known in advance. It has to be learned piece by
piece on each encounter with a new object. Yet in order to learn something, one
must: not be too prejudiced. This might explain why babies default on the
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hypothesis that only one object is out there. As good logicians, they maintain this
hypothesis until there is clear proof to the contrary, even if they witness curious
transformations in object shape and color.

From an evolutionary viewpoint, it is rather remarkable that nature founded
the bases of arithmetic on the most fundamental laws of physics. At least three
laws are exploited by the human "number sense." First, an object cannot simulta-
neously occupy several separate locations. Second, two objects cannot occupy the
same location. Finally, a physical object cannot disappear abruptly, nor can it sud-
denly surface at a previously empty location: Its trajectory has to be continuous.
We owe child psychologists Elizabeth Spelke and Renee Baillargeon the discovery
that even very young babies understand these laws. Indeed, in our physical envi-
ronment, they admit very few exceptions, the most prominent being caused by
shadows, reflections, and transparencies. (Perhaps this may explain the fascina-
tion and the confusion that these "objects" exert on young children.) These prin-
ciples therefore provide a firm foundation for the small amount of number
theory that the animal and human brains seems to be endowed with. The infant
brain relies exclusively on them to predict how many distinct objects are present.
It stubbornly refuses to exploit other cues to number that may be accidental, such
as the visual appearance of objects. This attests to the antiquity of babies' "num-
ber sense," for only evolution, with its millions of years of trial and error, could
possibly sort out the fundamental and the anecdotal properties of physical
objects.

Indeed, the tight link between discrete physical objects and numerical infor-
mation endures up to a much older age, where it eventually has a negative impact
on some aspects of mathematical development. If you know a three- or four-year-
old child, try the following experiment. Show him the picture on Figure 2.5 and
ask him how many forks he can see. You will be surprised to discover that he
reaches an erroneous total, because he counts every single piece of a fork as one
unit. He counts the broken fork twice and announces a total of six. It is extremely

Figure 2.5. Three- to four-year-olds believe that this set comprises six forks. They cannot avoid

counting each discrete physical object as one unit. (Adapted from Shipley and Shepperson 1990.)
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difficult to explain to him that the two separate pieces should be counted as one
unit. Likewise, show him two red apples and three yellow bananas, and ask him
how many different colors there are, or how many different kinds of fruit he can
see. Obviously, the correct response is two. Yet up to a relatively advanced age,
children cannot help counting every single object as one unit and therefore reach
the erroneous total of five. The maxim "Number is a property of sets of discrete
physical objects" is deeply embedded in their brains.

Nature, Nurture, and Number

Throughout this chapter, I have spoken of babies as though they were inert
organisms with rigid performances. When discussing experiments with young
children, we easily forget that age groups can vary from a few days up to ten or
twelve months of age. In fact, the first year of life is when the baby's brain pos-
sesses maximal plasticity. During this period, babies absorb an impressive amount
of new knowledge day after day and can therefore hardly be considered as a static
system whose performance is stable. Right after birth, they learn to recognize
their mother's voice and face; they begin to process the language spoken in their
surroundings; they discover how to command their body movements; and the list
could go on forever. We have no reason to believe that numerical development
escapes this general outburst of learning and discovery.

To do justice to the fluidity of babies' intelligence, the numerical abilities that
I have described in this chapter should be situated within a dynamic framework
—a perilous exercise given that we still know so little about the logic with which
the representation of number evolves in the first year of life. But at least we can
try to sketch a tentative scenario of the order and the way in which these abilities
mature with the passing months.

Let us start with birth, an age at which number discrimination abilities have
already been amply demonstrated. Newborns readily distinguish two objects
from three and perhaps even three from four, while their ears notice the difference
between two and three sounds. Hence, their brain apparently comes equipped
•with numerical detectors that are probably laid down before birth. The plan
required to wire up these detectors probably belongs to our genetic endowment.
Indeed, it is hard to see how children could draw from the environment sufficient
information to learn the numbers 1, 2, and 3 at such an early age. Even supposing
that learning is possible before birth or in the first few hours of life—during
which visual stimulation is often close to nil—the problem remains, because it
seems impossible for an organism that ignores all about numbers to learn to rec-
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ognize them. It is as if one asked a black-and-white TV to learn about colors!
More likely, a brain module specialized for identifying numbers is laid down
through the spontaneous maturation of cerebral neuronal networks, under direct
genetic control and with minimal guidance from the environment. Since the
human genetic code is inherited from millions of years of evolution, we probably
share this innate protonumerical system with many other animal species—a con-
clusion whose plausibility we have judged in the preceding chapter.

Though the newborn may be equipped with visual and auditory numerosity
detectors, no experiment to date proves that these two input modalities commu-
nicate and share their numerical cues right from birth. At present, only in six- to
eight-month-old babies has the connection between two sounds and two images
or three sounds and three images been demonstrated. While waiting for conclu-
sive experiments with younger children, it remains possible to maintain that
learning, rather than brain maturation, is responsible for the baby's knowledge of
numerical correspondence between sensory modalities. By dint of hearing single
objects emit only one sound, pairs of objects emit two sounds and so on, the
baby may discover the nonarbitrary relationship between a number of objects
and a number of sounds. Yet is such a return to constructivism plausible? Some
objects generate more than one sound, others no sound at all. Environmental
cues are therefore not devoid of ambiguity, and it is highly unclear that they
would support any form of learning. I therefore suspect that the babies' prefer-
ence for a correspondence between sounds and objects stems from an innate,
abstract competence for numbers.

A similar uncertainty reigns over addition and subtraction abilities. Karen
Wynn's 1+1 and 2-1 experiments have been performed only with babies who
were four months and a half at youngest. This lapse of time may be sufficient for
the baby to empirically discover that when one object and then a second disap-
pear behind a screen, two objects will be found if one cares to look for them. In
that case, Piaget would be partially right after all: Babies would have to extract
the elementary rules of arithmetic from their environment—although they
would do so at a much more precocious age than he imagined. Yet this knowl-
edge may, rather, be inborn, built into the very architecture of the baby's brain,
and become manifest as soon as the ability to memorize the presence of objects
behind a screen emerges at around four months of age.

Whatever its origin, a rudimentary numerical accumulator clearly enables
infants as early as six months of age to recognize small numbers of objects or
sounds and to combine them in elementary additions and subtractions.
Curiously, the one simple arithmetical notion that they may be lacking is the
ordering of numbers. At what age do we know that 3 is larger than 2? Few exper-
iments have studied this question in very young children, and none is really con-
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vincing. Yet their results suggest that no noticeable ordinal competence is found
before the age of about fifteen months. At this age, children start to behave like
the macaques Abel and Baker or the chimpanzee Sheba: They spontaneously
select the larger of two sets of toys. Younger babies seem unaware of the natural
ordering of numbers. It is as if their numerical detectors, programmed to
respond to one, two, or three objects, entertained no particular relationship to
one another. Perhaps we can liken the babies' representation of the numbers 1, 2,
and 3 to our adult knowledge of the colors blue, yellow, and green. We can recog-
nize these colors and we may even know how they combine ("blue plus yellow
makes green"), yet we have absolutely no concept of an order in which to sort
them. Likewise, babies can recognize one, two, or three objects and even know
that 1 plus 1 makes 2, without necessarily realizing that 3 is larger than 2 or that 2
is larger than 1.

If these preliminary data can be trusted, then the concepts of "smaller" and
"greater" are among the slowest to be put in place in the baby's mind. Where
would they arise from? Probably from an observation of the properties of addi-
tion and subtraction. The "greater" number would be the number that you can
reach by adding, and the "smaller" number the one that you can reach by sub-
tracting. Babies would discover that the same relation "greater than" exists
between 2 and 1 as between 3 and 2 because the same addition operation, "+1,"
enables one to move from 1 to 2 and from 2 to 3. By practicing successive addi-
tions, children would see the detectors for 1, 2, and 3 light up in a reproducible
order in their mind and would thus learn about their position in the series of
numbers.

But this is still a hypothetical scenario. A whole series of experiments would
have to be performed before it could be confirmed or rejected. The one thing
that we do know, at this stage, is that babies are much better mathematicians than
we though only fifteen years ago. When they blow the first candle on their birth-
day cake, parents have every reason to be proud of them, for they have already
acquired, whether by learning or by mere cerebral maturation, the rudiments of
arithmetic and a surprisingly articulate "number sense."



The Adult
Number Line

I recommend you to question all your beliefs,
except that two and two make four.

Voltaire, L'homme aux quarante ecus

I
have long been intrigued by Roman numerals. There is something of a contra-

diction between the simplicity of the first numerals and the perplexing com-

plexity of the others. The first three numerals, I, II, and III, follow a

self-evident rule: They simply contain as many bars as there are units. Number IV,

however, breaks the rule. It introduces a new sign, V, whose meaning is far from

obvious, and a subtraction operation, 5-1, that seems arbitrary—why not 6-2, 7-

3, or even 2x2?

Looking at the history of numerical notation, we find that the first three

Roman numerals are like living fossils—they draw us back to a remote time when

humans had not yet invented a way of writing down numbers and found it suffi-

cient to keep track of numbers by engraving a stick with as many notches as the

sheep or camels they owned. The series of notches preserved a durable record of

a past accounting. This was indeed the very beginning of a symbolic notation,

because the same row of five notches could symbolize any set of five objects.
This historical reminder, however, only thickens the mystery surrounding the

fourth Roman numeral. Why did people abandon a notation that was so useful

and simple? How did the arbitrariness of IV, which puts a burden on the attention

6 4

Chapter 3
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and memory of the reader, come to replace the simplicity of IIII, which enabled
the average shepherd to understand numbers? More to the point, if for one rea-
son or another some revision of the number notation system was required, why
did. the first numerals I, II, and III escape it?

Is it just a historical accident? Some chance events must have presided over the
fate of Roman number notation and its survival up to the present time. And yet
the singularity of the Roman numerals I, II, and III has a universal character that
transcends the mere history of Mediterranean countries. Georges Ifrah, in his
comprehensive book on the history of numerical notations, shows that in all civi-
lizations, the first three numbers were initially denoted by repeatedly writing
down the symbol for "one" as many times as necessary, exactly as in Roman
numerals. And most, if not all civilizations stopped using this system beyond the
number 3 (see Figure 3.1). The Chinese, for instance, denote the numbers 1, 2,
and 3 using one, two, and three horizontal bars—yet they employ a radically dif-
ferent symbol for number 4. Even our own Arabic digits, although they seem
arbitrary, derive from the same principle. Our digit 1 is a single bar, and our digits
2 and 3 actually derive from two or three horizontal bars that became tied togeth-
er when they were deformed by being handwritten. Only the Arabic digits 4 and
beyond can thus be considered as genuinely arbitrary.

Dozens of human societies around the world have progressively converged on
the same solution. Nearly all of them have agreed to denote the first three or four
numbers by an identical number of marks, and the following numbers by essen-
tially arbitrary symbols. Such a remarkable cross-cultural convergence calls for a
general explanation. It seems clear enough that aligning nineteen marks to
denote number 19 would impose an unbearable burden on number writing and

Figure 3.1. Across the world, humans have always denoted the first three numbers by series of

identical marks. Almost all civilizations abandon this analog notation beyond the numbers 3 or 4,

which mark the limits of man's "immediate" apprehension of number. (Redrawn from Ifrah 1994.)
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reading: Writing down nineteen strokes is a time-consuming and error-prone
operation, and how could the reader possibly distinguish nineteen from eighteen
or twenty? The emergence of number notations more compact than mere rows
of bars therefore seemed inevitable. Yet this still does not explain why all nations
have consistently elected to get rid of this system beyond the number 3 rather
than, say, 5, 8, or 10.

At this point, it is tempting to draw a parallel with infants' number discrimina-
tion abilities. Human infants readily discriminate between one and two objects or
between two and three objects, but their abilities do not extend much beyond this
point. Obviously, infants do not contribute much to the evolution of number
notations. Yet suppose that number discrimination abilities remained unchanged
in human adults. This might provide the first elements of an explanation: Beyond
number 3, the bar notation would no longer be legible because we would be
unable to distinguish IIII from IIIII at a glance.

Roman numerals, then, lead us to examine to what extent the proto-numeri-
cal abilities found in animals and human babies extend to human adults. In this
chapter, we hunt for living fossils and other cues such as Roman numerals which
draw us back to the very foundations of human arithmetic. Indeed, we find many
indications that the protonumerical representation of quantities still lives within
us. Though mathematical language and culture have obviously enabled us to go
way beyond the limits of the animal numerical representation, this primitive
module still stands at the heart of our intuitions about numbers. It retains a con-
siderable influence on our way of perceiving, conceiving, writing down, or speak-
ing about numbers.

1,2,3, and Beyond

The fact that there is a strict limit on the number of objects that we are able to
enumerate at once has been known to psychologists for at least a century. In
1886, James McKeen Cattel, in his laboratory at Leipzig, demonstrated that when
subjects were briefly shown a card bearing several black dots, they could enumer-
ate them with unfailing precision only if their number did not exceed three.
Beyond this limit, errors accumulated. H. C. Warren, then at Princeton, and later
Bertrand Bourdon, at the Sorbonne in Paris, each developed new methods of
investigation to accurately measure the time required to quantify sets of objects.
In 1908, Bourdon did not have any high-tech experimental equipment at his dis-
posal. His experiments, most often performed on himself, involved the tinkering
of specials tools. Let me quote from his original publication:
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The numbers, which were composed of horizontally aligned bright dots, were
one meter away from my eyes. A sheet of copper with a rectangular opening,
falling from a fixed height, let them be visible for a very short time... . To
measure response times, I used a carefully adjusted Hipp chronoscope [an
electro-mechanical chronometer accurate to within one thousandth of a sec-
ond]. The electrical circuit through the chronoscope was closed when the dots
started to become visible. Within this circuit was inserted a buccal switch
which consisted for the most part in two separate copper leaves, one side of
which was covered with fiber to insulate them from the mouth; I held these
leaves between my teeth, clenching them so that the leaves would touch; then
I would name the numbers as fast as possible as soon as I had recognized
them, and for this purpose I had to unclench my teeth, which interrupted the
circuit.

It was with this rudimentary apparatus that Bourdon discovered the funda-
mental law of visual quantification in humans. The time required to name a
number of dots grows slowly from 1 to 3, and then suddenly increases sharply
beyond this limit. At the very same point, the number of errors also jumps
abruptly. This result, which has been replicated hundreds of times, remains valid
to this day. It takes less than half a second to perceive the presence of one, two, or
three objects. Beyond this limit, speed and accuracy fall dramatically (Figure 3.2).

A careful measurement of the response time curve reveals several important
details. Between three and six dots, the increase in response time is linear, which
means that it takes a fixed additional duration to enumerate each additional dot.

Figure 3.2. Enumerating a collection of items is fast when there are one, two or three items, but

starts slowing down drastically beyond four. Errors begin to accumulate at the same point.

(Redrawn from Mandler and Shebo 1982.)
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It takes an adult about 200 or 300 milliseconds to identify each dot beyond three.
This slope of 200 to 300 milliseconds corresponds roughly to the time it takes an
adult to recite numbers when counting aloud as fast as possible. In children, the
speed of reciting numbers drops to one number every one or two seconds—and
the slope of the response time curve increases by the same amount. Thus to enu-
merate a set comprising more than three dots, adults and children alike have to
count the dots at a relatively slow rate.

But then why is the enumeration of numbers 1, 2, and 3 so fast? The flattening
of the response time curve within this region suggests that the first three dots do
not have to be counted one by one. The numbers 1, 2, and 3 seem to be recog-
nized without any appearance of counting.

While psychologists are still pondering over how such enumeration without
counting might work, they have at least conceived of a name for it. It is called
the "subitization" or "subitizing" ability, a name deriving from the Latin subitus,
which means sudden. This is something of a misnomer since subitization, howev-
er fast, is anything but instantaneous. It takes about five- or six-tenths of a second
to identify a set of three dots, or about the time it takes to read a word aloud or
identify a familiar face. Neither is this duration constant: It slowly increases from
1 to 3. Hence, subitization probably requires a series of visual operations all the
more complex the greater the number to be recognized.

What are these operations? A widely held theory supposes that we recognize
small sets of one, two, or three objects rapidly because they form easily recogniz-
able geometrical configurations: One object forms a dot, two make a line, and
three, a triangle. This hypothesis, however, cannot explain the observation that
we still subitize small sets whose objects are perfectly aligned, thus destroying all
geometrical cues. Indeed, it is hard to see what geometrical parameters distin-
guish the Roman numerals II and III—yet we readily subitize them.

Psychologists Lana Trick and Zenon Pylyshyn, however, found a situation in
which subitizing fails: when the objects are superimposed so that their locations
are not readily perceptible. When viewing concentric circles, for instance, we
have to count in order to determine whether there are two, three, or four of
them. Thus, the subitizing procedure seems to require objects to occupy distinct
locations—a cue that, as we saw earlier, is also exploited by babies to determine
how many objects are present.

I therefore believe that subitizing in human adults, like numerosity discrimi-
nation in babies and animals, depends on circuits of our visual system that are
dedicated to localizing and tracking objects in space. The occipito-parietal areas
of the brain contain neuronal ensembles that rapidly extract, in parallel across the
visual field, the locations of surrounding objects. Neurons in these areas seem to
encode the location of objects regardless of their identity and even to maintain a
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representation of objects that have been hidden behind a screen. Hence, the
information they extract is ideally abstract to feed an approximate accumulator.
During subitizing, I believe that those areas quickly parse the visual scene into
discrete objects. It is then easy enough to tally them up in order to obtain an
estimate of their numerosity. The neural network simulation I developed with
Jean-Pierre Changeux, which was described in Chapter 1, shows how this compu-
tation can be implemented by simple cerebral circuits.

Why would this mechanism introduce a discontinuity between 3 and 4?
Remember that the accuracy of the accumulator decreases with numerosity.
Hence it is increasingly difficult to distinguish a number n for its neighbors n+1
and n-1. Number 4 seems to be the first point where our accumulator starts to
make a significant number of discrimination errors, confusing it with 3 or 5. This
is why we have to count beyond the limit of 4—our accumulator still provides us
with a numerosity estimate, but one that is no longer accurate enough to select a
unique word for naming.

The theory of a "parallel accumulation of object locations" that I just sketched
is not the only available theory of subitization, however. According to UCLA psy-
chologists Randy Gallistel and Rochel Gelman, when we subitize, even if we are
not aware of it, we always count the elements one by one—but very quickly.
Subitizing would thus be a kind of fast serial counting without words. Although
this seems counterintuitive, subitization would actually require the orienting of
attention toward each object in turn and would therefore rely on a serial step-by-
step algorithm. This is where the major testable difference with my hypothesis
lies. My model suggests that, during subitizing, all the objects in the visual field
are processed simultaneously and without requiring attention—what in cogni-
tive psychologists' jargon is called "parallel preattentive processing". In my net-
work simulation, number detectors start to respond at about the same time
whether one, two, or three objects are present (although as the input numerosity
gets larger they do take a slightly longer time to stabilize to the precise activation
pattern that is needed for naming). Most importantly, in contrast to Gelman and
Gallistel's fast counting hypothesis, my number detectors do not require each
object to be singled out in turn by an mental "spotlight" or tagging process—all
are taken in at once and in parallel.

Although the jury is still out on this issue, perhaps the best evidence that
subitizing does not require serial orienting of attention conies from human
patients who, following a cerebral lesion, are unable to attentively explore their
visual environment and therefore to count. Mrs. I, whom I have examined to-
gether with Dr. Laurent Cohen at the hopital de la Salpetriere in Paris, suffered
from a posterior cerebral infarct due to high blood pressure during her pregnancy.
One year later, the after-effects of this lesion on her visual perception abilities
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were still present. Mrs. I had become unable to recognize certain visual shapes,
including faces, and she also complained of curious distortions of her vision.
When we asked her to describe a complex image, she often omitted important
details and did not perceive the meaning of the whole. Neurologists call this
deficit "simultanagnosia." It made counting impossible for her. When four, five,
or six dots were briefly flashed on a computer screen, she almost always forgot to
count some of them. She attempted to count but failed to orient toward each
object in turn. Once she had counted about half of the items, she stopped
because she thought that she had counted them all. Another patient with a simi-
lar deficit sank into an opposite pattern of error: She failed to take good note of
the items that she had already counted, and she kept on counting the same items
over and over again. She would tell us, without batting an eyelid, that there were
twelve points when in fact there were only four!

Despite their terrible counting handicap, however, these two patients experi-
enced astonishingly little difficulty in enumerating sets of one, two, or even three
dots. With small numbers, they responded quite rapidly confidently, and almost
always flawlessly. Mrs. I, for instance, made errors only 8% of the time when enu-
merating three items, but she erred 75% of the time when enumerating four
items. This dissociation is one we have often observed: The perception of small
numerosities can remain intact even though a cerebral lesion makes it totally
impossible for the patient to sequentially orient attention toward each object in
turn. This strongly suggests that subitizing does not involve sequential counting,
but merely a parallel and preattentive extraction of objects in the image.

Approximating Large Numbers

In the motion picture Rain Man, in which Dustin Hoffman plays Raymond, an
autistic man with prodigious abilities, a peculiar event occurs. A waitress drops a
box of toothpicks on the floor, and Raymond immediately utters "82 ... 82 ... 82
.. . that's 246!" as if he had counted the toothpicks by groups of 82 in less time
than it would take us to say "2 and 2, 4." In Chapter 6, we will analyze in detail
the feats that have been attributed to calculating prodigies such as Raymond. Let
me say right now, however, that in this particular case, I do not believe that
Dustin Hoffman's performance should be taken at face value. A few anecdotal
reports have been made of fast enumeration in some autistic patients; but there
have been no response time measurements that I know of that might help deter-
mine whether these people do indeed count. My own experience is that simulat-
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ing Rain Man's performance is relatively easy by starting to count in advance, by
mentally adding groups of dots, and by bluffing a bit. (Just one success at guess-
ing the exact number of people in a room is often sufficient to turn you into a leg-
end!) The most likely possibility, then, is that the subitizing limit of three or four
items applies equally to all humans.

But what is the nature of this limit? Are our parallel enumeration abilities real-
ly paralyzed when a set comprises more than three items? Do we necessarily have
to count when this limit is reached? In fact, any adult can estimate, within a rea-
sonable margin of uncertainty, numbers way beyond 3 or 4. The subitizing limit
is therefore not an insurmountable barrier, but a mere borderline beyond which
there is a universe of approximation. When confronted with a crowd, we may
not know whether there are eighty-one, eighty-two, or eighty-three people, but
we can estimate eighty or one hundred without counting.

Such approximations are generally valid. Psychologists do know of situations
in which human estimations systematically deviate from the real value (Figure
3.3). For instance, we all tend to overestimate numerosity when the objects are
regularly spread out on a page, and conversely we tend to underestimate sets of
irregularly distributed objects, perhaps because our visual system parses them
into small groups. Our estimations are also sensitive to context, leading us to
underestimate or overestimate the very same set of thirty dots depending on
whether it is surrounded by sets of ten or of one hundred dots. As a rule, howev-
er, our approximations are remarkably accurate, especially considering the rarity
of occasions in which we can verify their correctness in everyday life. How often
indeed do we get exact feedback as to whether a crowd is made up of one hun-
dred, two hundred, or five hundred people? Yet in a laboratory experiment, it has
been shown that one single exposure to veridical numerical information, such as
a set of two hundred dots dutifully labeled as such, suffices to improve our esti-
mations of sets of between ten and four hundred dots. To calibrate our number
estimation system, only a handful of precise measurements are required.

Far from being exceptional, our perception of large numbers follows laws that
are strictly identical to those that govern animal numerical behavior. We are sub-
ject to a distance effect: We more easily distinguish two distant numerosities,
such as 80 and 100, than two closer numbers such as 81 and 82. Our perception of
numerosity also exhibits a magnitude effect: For an equal distance, we have a
harder time discriminating two large numerosities, such as 90 and 100, than two
small ones, such as 10 and 20.

These laws are remarkable for their unfailing mathematical regularity, an
unusual finding in psychology. Suppose that a given person can discriminate,
with an accuracy of 90%, a set of thirteen dots from another reference set of ten
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Figure 3.3. The difference between 2 and 3 items (top left) is immediately perceptible to us, but

we cannot distinguish 5 from 6 (top right) without counting. Our perception of large numbers

relies on the density of items, the area they occupy, and the regularity of their distribution in space.

In the middle "solitaire illusion, "first described by Uta and Christopher Frith in 1972, our percep-

tual apparatus incorrectly convinces us that there are more white dots than black dots, probably

because the white dots are more tightly grouped. Bottom, randomly distributed dots seem less

numerous than regularly spaced ones; each disk actually has 37 dots.

dots (hence a numerical distance of 3). Let us now double the size of the refer-
ence set to twenty dots. How far from this numerosity do we have to move to

again reach 90% correct discrimination? The answer is quite simple: one merely
has to double the numerical distance to 6, and hence to present a set of twenty-six
dots. When the reference number doubles, so does the numerical distance that
humans can discriminate within a fixed level of performance. This multiplication
principle is also known as the "scalar law" or "Weber's law," after the German
psychologist who discovered it. Its remarkable similarity to the laws that govern
animal behavior proves that, inasmuch as the approximate perception of
numerosity is concerned, humans are no different from rats or pigeons. All our
mathematical talent is useless when it comes to perceiving and estimating a large
number.
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The Quantity Behind the Symbols

That our apprehension of numerosity does not differ much from that of other
animals may seem unremarkable. After all, mammals share a fundamentally sim-
ilar visual and auditory perception apparatus. In some domains, such as olfaction,
human perceptual abilities even turn out to be quite inferior to those of other
species. But when it comes to language, one might think that our performance
should set us apart from the rest of the animal kingdom. Obviously, what distin-
guishes us from other animals is our ability to use arbitrary symbols for numbers,
such as words or Arabic digits. These symbols consist of discrete elements that
can be manipulated in a purely formal way, without any fuzziness. Introspection
suggests that we can mentally represent the meaning of numbers 1 through 9
with equal acuity. Indeed, these symbols seem equivalent to us. They all seem
equally easy to work with, and we feel that we can add or compare any two digits
in a small and fixed amount of time, like a computer. In summary, the invention
of numerical symbols should have freed us from the fuzziness of the quantitative
representation of numbers.

How misleading these intuitions can be! Although numerical symbols have
provided us with a unique door to the otherwise inaccessible realms of rigorous
arithmetic, they have not severed our roots with the approximate animal repre-
sentation of quantities. Quite to the contrary, each time we are confronted with
an Arabic numeral, our brain cannot but treat it as a analogical quantity and rep-
resent it mentally with decreasing precision, pretty much as a rat or chimpanzee
would do. This translation from symbols to quantities imposes an important and
measurable cost to the speed of our mental operations.

The first demonstration of this phenomenon dates back to 1967. At that time,
it was judged so revolutionary as to deserve the honors of a publication in the
journal Nature. Robert Moyer and Thomas Landauer had measured the precise
time an adult took to decide which of two Arabic digits was the largest. Their
experiment consisted in flashing pairs of digits such as 9 and 7 and asking the
subject to report where the larger digit was located by pressing one of two
response keys.

This elementary comparison task was not as easy as it appeared. The adults
often took more than half a second to complete it, and the results were not
error-free. Even more surprising, performance varied systematically with the
numbers chosen for the pair. When the two digits stood for very different quanti-
ties such as 2 and 9, subjects responded quickly and accurately. But their
response time slowed by more than 100 milliseconds when the two digits were
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numerically closer, such as 5 and 6, and subjects then erred as often as once in
every ten trials. Moreover, for equal distance, responses also slowed down as the
numbers became increasingly larger. It was easy to select the larger of the two
digits 1 and 2, a little harder to compare digits 2 and 3, and far harder to respond
to the pair 8 and 9.

Let there be no misunderstanding: The people that Moyer and Landauer test-
ed were not abnormal, but individuals like you and me. After experimenting on
number comparison for more than ten years, I still have yet to find a single sub-
ject who compares 5 and 6 as quickly as he or she compares 2 and 9, without
showing a distance effect. I once tested a group of brilliant young scientists,
including students from the top two mathematical colleges in France, the Ecole
Normale Superieure and the Ecole Polytechnique. All were fascinated to discover
that they slowed down and made errors when attempting to decide whether 8 or
9 was the larger.

Nor does systematic training help. In a recent experiment, I attempted to train
some University of Oregon students to escape the distance effect. I simplified the
task as much as possible by presenting only the digits 1, 4, 6, and 9 on a computer
screen. The students had to press a right-hand key if the digit they saw was larger
than 5, and a left-hand key if it was smaller than 5. One can hardly think of a sim-
pler situation: If you see a 1 or a 4, press left, and if you see a 6 or 9, press right.
Yet even after several days and 1,600 training trials, the subjects were still slower
and less accurate with digits 4 and 6, which are close to 5, than with digits 1 and 9,
which are further away from 5. In fact, although the responses became globally
faster in the course of training, the distance effect itself—the difference between
digits close to 5 and far from 5—was left totally unaffected by training.

How are we to interpret these number comparison results? Clearly, our mem-
ory does not preserve a stored list of responses for all possible digit comparisons.
Were we to learn all possible combinations of digits by rote—for instance, that 1
is smaller than 2, 7 larger than 5, and so on—comparison times should not vary
with number distance. Where, then, does the distance effect come from? As far
as physical appearance is concerned, digits 4 and 5 are no more similar than dig-
its 1 and 5. Hence the difficulty in deciding whether 4 is smaller or larger than 5
has nothing to do with a putative difficulty in recognizing the shapes of digits.
Obviously, the brain does not stop at recognizing digit shapes. It rapidly recog-
nizes that at the level of their quantitative meaning, digit 4 is indeed closer to 5
than 1 is. An analogical representation of the quantitative properties of Arabic
numerals, which preserves the proximity relations between them, is hidden
somewhere in our cerebral sulci and gyri. Whenever we see a digit, its quantita-
tive representation is immediately retrieved and leads to greater confusion over
nearby numbers.
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One more striking demonstration of this fact is what occurs when we com-
pare two-digit numerals. Suppose you had to decide whether 71 was smaller or
larger than 65. One rational approach is to initially examine only their leftmost
digits, 7 and 6, to note that 7 is larger than 6, and to conclude that 71 is larger than
65 without even considering the identity of the rightmost digits. Indeed, this sort
of algorithm is used by computers to compare numbers. But this is not how the
human brain does it. When one measures the time it takes to compare several
two-digit numbers with 65, a smooth continuous curve is found (Figure 3.4).
Comparison time increases continuously as the numbers to be compared become
increasingly close to the reference number 65. Both the left and the right digits
contribute to this progressive increase. Thus, it takes more time to figure out that
71 is larger than 65 than to reach the same decision for 79 and 65, although the
leftmost digit 7 is the same in both cases. Furthermore, responses are not dispro-
portionately slowed when the decades change: Comparing 69 with 65 is just a bit
slower than comparing 71 with 65, whereas it should be much more difficult if
we were indeed selectively attending initially to the leftmost digit only.

Figure 3.4. How long does it take to compare two numbers? Thirty-five adult volunteers classi-

fied all two-digit Arabic numerals between 31 and 99 as being smaller or larger than 65, while

their responses were timed to the nearest millisecond. Each black dot shows the average response

time to a given number. Responses become increasingly slow as the target numeral gets closer to 65:

the distance effect. (Data from Dehaene et al. 1990.)
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The only explanation I can come up with is that our brain apprehends a two-
digit numeral as a whole and transforms it mentally into an internal quantity or
magnitude. At this stage, it forgets about the precise digits that led to this quanti-
ty. The comparison operation is concerned only with numerical quantities, not
the symbols that convey them.

The Mental Compression of Large Numbers

The speed with which we compare two Arabic numerals does not depend solely
on the distance between them, but also on their size. It takes much more time to
decide that 9 is larger than 8 than to decide that 2 is larger than 1. For equal dis-
tance, larger numbers are more difficult to compare than smaller ones. This slow-
ing down for large numbers is again reminiscent of the perceptual abilities of
babies and animals, which are similarly affected by numerical distance and size
effects. Such an astonishing parallel confirms that, starting with a symbol such as
an Arabic numeral, our brain retrieves an internal representation of quantities
remarkably similar to the one present in animals and young children.

In fact, just as in animals, the parameter that governs the ease with which we
distinguish two numbers is not so much their absolute numerical distance but
their distance relative to their size. Subjectively speaking, the distance between 8
and 9 is not identical to that between 1 and 2. The "mental ruler" with which we
measure numbers is not graduated with regularly spaced marks. It tends to com-
press larger numbers into a smaller space. Our brain represents quantities in a
fashion not unlike the logarithmic scale on a slide rule, where equal space is allo-
cated to the interval between 1 and 2, between 2 and 4, or between 4 and 8. As a
result, the accuracy and speed with which calculations can be performed neces-
sarily decreases as the numbers get larger.

Many an empirical result may be summoned to support the hypothesis of the
mental compression of large numbers. Some experiments are based solely on
introspection. What number subjectively rates as being closer to 5: 4 or 6?
Although the question seems farfetched, most people respond that for equal dis-
tance, the larger number 6 seems to differ less. Other experiments have used
more subtle and indirect methods. For instance, let us pretend that you are a ran-
dom number generator and that you have to select numbers at random between
1 and 50. Once this experiment is performed on a large number of subjects, a sys-
tematic bias emerges: Instead of responding randomly, we tend to produce small-
er numbers more frequently than larger ones—as if smaller numbers were
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overrepresented in the "mental urn" from which we were drawing. This should

persuade us to never draw anything at random without relying on an "objective"

source of randomness, such as dice or a real random number generator!

I suspect that this bias for small numbers has far-reaching and sometimes per-
nicious consequences for the way we use our intuition to conduct and interpret

statistical analyses. Consider the following problem. Two series of numbers have
been generated at random by a computer. Without making any calculations,

your task is to rate how randomly and evenly each series seems to sample the
interval of numbers between 1 and 2,000:

Series A: 879 5 1,322 1,987 212 1,776 1,561 437 1,098 663

Series B: 238 5 689 1,987 16 1,446 1,018 58 421 117

Most people respond that the numbers in series B are more evenly spread out
and therefore "more random" than those in series A. In series A, large numbers

seem to appear much too often. And yet from a mathematical point of view, it is
A, and not B, that samples the continuum of numbers between 1 and 2,000 best.
The numbers in series A are regularly spaced by just over 200 units, whereas

those in series B are exponentially distributed. The reason why we prefer series
B is that it fits best with our mental idea of the number line, which is pictured
as a compressed series in which larger numbers are less conspicuous than smaller
ones.

A compression effect is also perceptible in the way we select units of measure-

ment. On April 17, 1795, of the French republic—Germinal 18th, year III, of the
"revolutionary calendar"—the metric system was instituted in Paris. Aiming at

universality, its units covered a whole range of powers of ten, from nanometer to
kilometer. Even though each power of ten received a specific name—millimeter,

centimeter, decimeter, meter, and so on—these units were still spaced too far
apart to be practical for everyday use. So the French lawmakers stipulated that
"each decimal unit shall have its double and its half". From this stipulation
derived the regular series 1, 2, 5, 10, 20, 50, 100 . . . , still in use today for coins and
banknotes. It fits our number sense because it approaches an exponential series
while comprising only small round numbers. In 1877, similar constraints led
Colonel Charles Renard to adopt a method for the normalizing of industrial
products such as bolt diameters or wheel sizes that was based on another quasi-
logarithmic series (100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1,000). As soon
as a continuum needs to be divided into discrete categories, intuition dictates the
selection of a compressed scale, most often logarithmic, which tightly matches
our internal representation of numbers.
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Reflexive Access to Number Meaning

An Arabic numeral first appears to us as a distribution of photons on the retina, a

pattern identified by visual areas of the brain as being the shape of a familiar dig-
it. Yet the many examples that we have just described show that the brain hardly
pauses at recognizing digit shapes. It rapidly reconstructs a continuous and com-
pressed representation of the associated quantity. This conversion into a quantity
occurs unconsciously, automatically, and at great speed. It is virtually impossible

to see the shape of digit 5 without immediately translating it into quantity five—

even when this translation is of no use at all in the current context. Understand-
ing numbers, then, occurs as a reflex.

Suppose you were shown two digits side by side and were asked to tell, as fast
as you can, whether they were the same or different. Surely you'd think that you

might base your decision exclusively on the visual appearance of the digits—
whether or not they share the same shape. But measurement of response times
shows that this supposition is wrong. Deciding that 8 and 9 are different digits

takes systematically longer than reaching the same decision for digits 2 and 9.
Once again, numerical distance governs our speed of responding. Quite uncon-
sciously, we are reluctant to respond that 8 and 9 are different digits because the
quantities that they represent are so similar.

A similar "comprehension reflex" also affects our memory for digits. Mem-
orize the following list of digits: 6, 9, 7, 8. Done? Now tell me whether digit 5 fig-

ured in the list. And what about digit 1? Does the first question seem harder than
the second? Although the correct response is "no" in both cases, formal experi-

ments show that the more distant the probe digit is from the memorized list, the
shorter the response time. The list is obviously not memorized only as a series of
arbitrary symbols, but also as a swarm of quantities close to 7 or 8—which is
why we can immediately tell that 1 is not in the set.

Is it ever possible to inhibit the comprehension reflex? To answer this ques-
tion, subjects can be placed in a situation where it is really advantageous for them
not to know the meaning of digits. Two Israeli researchers, Avishai Henik and
Joseph Tzelgov, presented pairs of digits of different sizes such as 1 and 9 on a
computer screen. They measured how much time subjects required to indicate
the symbol that was printed in larger font. This task requires subjects to focus
their attention on physical size and to neglect, as much as possible, the numerical
size of the digits. Once again, however, an analysis of response times shows how
automatic and irrepressible the comprehension of numerals is. It is much easier
for subjects to respond when the physical and numerical dimensions of the stim-
uli are congruent, as in the pair 1 9, than when they are conflicting, as in the pair
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9 1. We apparently cannot forget that the symbol "1" means a quantity smaller
than nine.

Even more surprisingly, access to numerical quantity can occur in our brain
under conditions in which we are not even aware of having seen a digit. By pre-
senting a symbol on a computer for a very short period of time, it can be made to
appear invisible. One technique that psychologists call "sandwich priming" con-
sists in preceding and following the word or digit one desires to hide by a mean-
ingless character string. One may, for instance, show "#######," then the
word "five," then "#######," and finally the word "SIX". If the first three
strings are each presented only for one twentieth of a second, the prime word
"five," sandwiched between the other strings, becomes invisible—not just diffi-
cult to read, but vanished from the stream of consciousness. Under the right con-
ditions, even the programmer of the experiment cannot tell whether the hidden
word is present or not! Only the first string "#######" and the word "SIX"
remain consciously visible. Yet for 50 milliseconds, a perfectly normal visual stim-
ulus "five" was present on the retina. In fact unbeknownst to the subject, it even
contacted a whole series of mental representations in his or her brain. This can be
proved by measuring the time taken to name the target word "SIX": It varies sys-
tematically with the numerical distance between the prime word and the target
word. Naming the word "SIX" is faster when it is preceded by a close prime such
as "five" than when it is preceded by a more distant prime such as "two." Hence,
the comprehension reflex unfolds in this situation too: Although the word "five"
has not been consciously seen, it is still interpreted by the brain as "a quantity
close to six."

Although we are not aware of all the automatic numerical computations that
are continuously being handled in our brain circuits, their impact in our daily
lives is certain and can be illustrated in numerous ways. In a major train station in
Paris, the platforms are numbered, but the design of the station, which is divided
into several distinct zones, imposes a disruption in the number sequence:
Platform 11 is next to platform 12, but platform 13 is far away. So deeply is the
continuity of numerical quantities engraved in our minds that this design throws
many travelers into disarray. Our intuition imposes that platform 13 be next to
platform 12.

Along the same lines, here is a factoid guaranteed to catch your attention:

"St. Theresa of Avila died during the night between the 4th and 15th of
October 1582."

No, this is not a typo! As luck would have it, the saint died on the very night
on which pope Gregory XIII abrogated the ancient Julian calendar, instituted by
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Julius Caesar, and replaced it with the Gregorian calendar still in use. The adjust-
ment, which was made necessary by the progressive shift of calendar dates from
astronomical events such as solstices over the course of centuries, deemed that
the day after October 4 became October 15—a punctual decision, but one that
profoundly upsets our sense of the continuity of numbers.

The automatic interpretation of numbers is also exploited in the field of
advertising. If so many retailers take the trouble to mark price tags at $399 instead
of $400, it is because they know that their clients will automatically think of this
price as being "about 300 dollars"; only on reflection will they realize that the
actual sum is very close to 400 dollars.

As a final example, let me report on my own experience of having to adapt to
the Fahrenheit temperature scale. In France, where I was born and raised, we use
only the centigrade scale, in which water freezes at 0° and boils at 100° . Even
after living in the United States for two years, I still found it difficult to think of
32°F as cold, because for me 32° automatically evoked the normal temperature
on a very warm sunny day! Conversely, I suppose that most Americans traveling
in Europe are shocked by the idea that anything as small as 37° can represent the
temperature of the human body. The automatic attribution of meaning to
numerical quantities is deeply embedded in our brains, and an adult can revise it
only with great difficulty.

A Sense of Space

Numbers do not just evoke a sense of quantity; they also elicit an irrepressible
feeling of extension in space. This intimate link between numbers and space was
apparent in my number comparison experiments. As you may remember, sub-
jects had to classify numbers as smaller or larger than 65. To this end they held
two response keys, one in the left hand and the other in the right hand. Being a
rather obsessive experimenter, I systematically varied the side of response: Half
of the subjects responded "larger" with their right hand and "smaller" with their
left hand, while the other group of subjects followed the opposite instructions.
Surprisingly, this seemingly innocuous variable had an important effect: Subjects
in the "larger-right" group responded faster and made fewer errors than those in
the "larger-left" group. When the target number was larger than 65, subjects
pressed the right-hand key faster than the left-hand key; the opposite was true for
numbers smaller than 65. It was as if, in the subject's mind, large numbers were
spontaneously associated with the right-hand side of space and small numbers
with the left-hand side.
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To what extent this association was automatic, it remained to be seen. To fig-
ure this out, I used a task that had little to do either with space or with quantity:
Subjects now determined whether a digit was odd or even. Subsequently, other
researchers have used even more arbitrary instructions such as discriminating
whether a digit's name starts with a consonant or a vowel, or whether it has a
symmetrical visual shape. Regardless of instructions, the same effect occurs: The
larger the number, the faster right-hand responses are, compared with left-hand
responses. And conversely, the smaller the number, the greater the bias toward
responding faster on the left. As a tribute to Lewis Carroll, I called this finding the
SNARC effect—an acronym for "Spatial-Numerical Association of Response
Codes." (Carroll's wonderfully non-sensical poem, "The Hunting of the Snark,"
tells of the relentless quest for a mythical creature, the Snark, that no one has ever
seen but whose behavior is known in exquisite detail, including its habit of get-
ting up late and its fondness for bathing-machines—a very appropriate metaphor
for scientists' obstinate pursuit of ever more accurate descriptions of nature, be
they termed quarks, black holes, or universal grammars. Unfortunately, I could
not think of a meaningful acronym for Carroll's original spelling of Snark!) The
fact that the SNARC effect occurs whenever a digit is seen, even when the task
itself is nonnumerical, confirms that it reflects the automatic activation of quanti-
ty information in the subject's brain.

Across the many experiments in which my colleagues and I "hunted the
SNARC," we made a number of interesting discoveries. First, the absolute size of
the numbers does not matter. What counts is their size relative to the interval of
numbers used in the experiment. Numbers 4 and 5, for instance, are preferen-
tially associated with the right if the experiment comprises only numbers from
0 to 5, and with the left if only numbers from 4 to 9 are used. Second, the hand
used for responding is also irrelevant: When subjects respond while crossing
the hands, it is still the right-hand side of space that is associated with larger num-
bers, even though right-sided responses are made using the left hand. And of
course subjects are completely unaware of responding faster on one side than
on the other.

The finding of an automatic association between numbers and space leads to
a simple yet remarkably powerful metaphor for the mental representation of
numerical quantities: that of a number line. It is as if numbers were mentally
aligned on a segment, with each location corresponding to a certain quantity.
Close numbers are represented at adjoining locations. No wonder, then, that we
tend to confound them, as reflected by the numerical distance effect. Further-
more, the line can be metaphorically thought of as being oriented in space: Zero
is at the extreme left, with larger numbers extending toward the right. This is
why the reflex encoding of Arabic numerals as quantities is also accompanied by
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an automatic orientation of numbers in space, small ones to the left and large
ones to the right.

What is the origin of this privileged axis oriented from left to right? Is it linked
to a biological parameter such as handedness or hemispheric specialization, or
does it depend only on cultural variables? Exploring the first hypothesis, I tested a
group of left-handers—but they did not differ from right-handers and still associ-
ated large numbers with the right. Turning then to the second hypothesis, my
colleagues and I recruited a group of twenty Iranian students who had initially
learned to read from right to left, contrary to our Occidental tradition. This time,
the results were more conclusive. As a group, Iranians did not show any preferen-
tial association between numbers and space. In each individual, however, the
direction of the association varied as a function of exposure to Western culture.
Iranian students who had lived in France for long showed a SNARC effect just
like that of native French students, while those who had emigrated from Iran
only a few years before tended to associate large numbers with the left-hand side
of space rather than the right-hand side. Thus, it seems that cultural immersion is
a major factor. The direction of the association between numbers and space
seems to be related to the direction of writing.

A minute of reflection shows that indeed, the organization of our Western
writing system has pervasive consequences on our everyday use of numbers.
Whenever we write down a series of numbers, small numbers appear first in the
sequence and hence to the left. In this way, left-to-right organization is imposed
on rulers, calendars, mathematical diagrams, library bookshelves, floor signals
above elevator doors, computer keyboards, and so on The internalization of this
convention starts in childhood: Young American children already explore sets of
objects from left to right, while Israeli children do the opposite. When counting,
Occidental children almost always start on the left. The regular association of the
beginning and ending points of counting with different directions of space then
becomes internalized as an integral characteristic of the mental representation
of number.

When this implicit convention is violated, we suddenly become painfully
aware of its importance. Travelers entering Terminal 2 of the Charles de Gaulle
airport in Paris experience a confusing situation: The gates bearing small num-
bers extend to the right, while those bearing large numbers extend to the left. I
have observed many travelers, including myself, heading in the wrong direction
after being assigned a gate number—a spatial disorientation that even repeated
visits does not fully dissipate.

Although this had not yet been studied empirically, numbers are also probably
associated with the vertical axis. I once stayed with colleagues at a hotel hanging
from a cliff above the Adriatic Sea near Trieste, in Italy. The entrance was on the
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top floor, and perhaps for this reason successive floors were numbered from top
to bottom. Confusion was always great when we took the elevator. Going up, we
unconsciously expected the lighted floor numbers to increase, but the opposite
occurred, perplexing us for a few seconds. We even had trouble figuring out
which button to press to go one floor up! My hope is that architects and ergono-
mists, if they ever read this book, will adopt in the future a systematic rule of
numbering from left to right and from bottom to top, for this is indeed a conven-
tion that our brains have come to expect, at least in our Western culture.

Do Numbers Have Colors?

Though a majority of people have an unconscious mental number line oriented
from left to right, some have a much more vivid image of numbers. Between 5%
and 10% of humanity is thoroughly convinced that numbers have colors and
occupy very precise locations in space. In the 1880s already, Sir John Galton
remarked that several acquaintances, most of them women, gave numbers extra-
ordinarily precise and vivid qualities that were incomprehensible to anybody else.
One. of them described numbers as a ribbon undulating rightward, richly colored
in shades of blue, yellow, and red (Figure 3.5). Another claimed that numbers
from 1 to 12 coiled in a vaguely circular curve, with a slight break between 10 and
11. Beyond 12, the curve took off toward the left with distinct curls for each
decade. A third person maintained that numerals from 1 to 30 appeared written
in a vertical column in his mind's eye, and that the following decades progressive-
ly shifted to the right. According to him the numerals were "about half an inch
long, of a light grey colour on a darker brownish grey colour."

Such "number forms," however outlandish, were not just inventions springing
from the fertile minds of Victorians eager to please Galton's passion for numbers.
A recent survey, conducted a century after Galton's, found similar images of
numbers in modern university students—the same curves in some, the same
straight lines in others, the same abrupt changes around decade boundaries, and
so on. Furthermore, associations between numbers and colors are systematic:
Most people associate black and white with either 0 and 1 or 8 and 9; yellow, red,
and blue with small numbers such as 2, 3, and 4; and brown, purple, and gray
with larger numbers such as 6, 7, and 8.

These statistical regularities suggest that most people who claim to experience
number forms are sincere. They seem to faithfully describe a genuine percept,
which can be extremely precise. One such person was given fifty colored pencils
in order to couch her images of numbers on paper. On two different occasions
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Figure 3.5. These drawings describe the "number forms" experienced by two of Galton's subjects.

One of them sees a colorful ribbon extending rightward. The second places numbers on a twisting

curve whose initial section resembles the face of a clock. (Reprinted from Galton 1880 by permis-

sion of the publisher; copyright ©1880 by Macmillan Magazines Ltd.)

separated by one week, she selected almost exactly the same shades of color. For
some numbers, she even felt the need to mix the hues of several pencils to better
depict her exact mental image.

Despite their rarity and strangeness, number forms share many properties
with the "normal" representation of numerical quantities. The series of integers
is almost always represented by a continuous curve, 1 falling next to 2, 2 next to
3, and so on. Only occasionally does one find abrupt changes in direction or
small discontinuities at decade boundaries—for instance, between 29 and 30.
Not a single person has yet claimed to see a jumbled image of numbers in which,
say, primes or squares are grouped together on the same curve. The continuity of
numerical quantities is the major parameter along which number forms are
organized.

Relations between numbers and space are also respected. In most number
forms, increasing numbers extend toward the top right. Finally, most people
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claim that their number form becomes increasingly fuzzy for larger numbers.
This is reminiscent of the magnitude or compression effect that characterizes ani-
mal and human numerical behavior and limits the accuracy with which we can
mentally represent large numbers.

In essence, then, number forms can be likened to a conscious and enriched
version of the mental number line that we all share. While most people's mental
number line is apparent only in subtle reaction time experiments, number forms
are readily available to awareness and are also richer in visual details such as color
or a precise orientation in space. Where do these illuminations come from?
When questioned, the bearers of number forms either claim that they emerged
spontaneously before the age of eight, or that they have had them for as long as
they can remember. Sometimes several members of a family share the same type
of number form. Yet this does not necessarily mean that a common genetic com-
ponent is involved: The familial environment could also be a determinant.

My own speculation leads me to suppose that number forms may have some-
thing to do with how cortical maps of space and number are formed during
development. As we have seen in chapter 2, babies may already possess a "mental
map" of numerosiry. Between the ages of three and eight, with schooling, the ini-
tial number line must be considerably enriched in order to accommodate the
child's increasing knowledge of large numbers and of numeration in base 10. One
might speculate that the acquisition of arithmetic is accompanied by a progres-
sive expansion of the amount of cortex dedicated to the "number map" (such
increases have indeed been observed in sensorimotor brain areas when an animal
learns a fine manual task). As we shall see in Chapters 7 and 8, the inferior pari-
etal cortex, a lateral and posterior brain region nearing the junction between the
parietal, occipital, and temporal lobes, is a plausible candidate for where in the
brain this expansion of the neural networks for arithmetical knowledge might
occur. Because the total number of neurons remains constant, the growth of the
numerical network must occur at the expense of the surrounding cortical maps,
including those coding for color, form, and location. In some children, perhaps
the shrinkage of nonnumerical areas may not reach its fullest term. In this case,
some overlap between the cortical areas coding for numbers, space, and color
may remain. Subjectively, this might translate into an irrepressible sensation of
"seeing" the color and location of numbers. A similar account might explain the
related phenomenon of synesthesia—the impression, familiar to poets or musi-
cians, that sounds have shapes and that tastes evoke colors.

Speculative as it may be, this theory of how the cortex gets colonized by an
increasingly refined map of numbers has some evidence in its favor. The neu-
ropsychologists J. Spalding and Oliver Zangwill have described a twenty-four-
year-old patient whose visual image of numbers disappeared suddenly when he
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experienced a lesion in the left parieto-occipital area, a region that has long been
suspected to play a central role in mental arithmetic. Indeed, the patient suffered
from severe difficulties both in calculating and in orienting in space (this neuro-
logical syndrome is discussed in more detail in Chapter 7). Hence, this case con-
firms that the subjective feeling of "seeing numbers" rests on the simultaneous
coding of numerical and spatial information side by side in the same cerebral
region.

Further, the idea that cortical maps may overlap and engender strange subjec-
tive sensations has been validated in studies of amputees. Following amputation
of one arm, the region of the somatosensory cortex that represented this arm
becomes vacant and is colonized by surrounding representations such as the
head. In rare cases, it is then possible, by stimulating certain points of the face, to
create sensations that feel as if they are coming from the missing arm, thus giving
patients an irresistible impression of possessing a "phantom limb." A drop of
water dripping on the face, for instance, feels as if the nonexistent arm were
immersed in a bucket! I believe that the phenomenon of number forms, in which
numbers evoke phantom colors and shapes, has a similar origin in overlapping
cortical maps.

Intuitions of Number

It is now time to recapitulate the essential message of this chapter. These obser-
vations on Roman numerals, on the time it takes to compare Arabic numerals,
and on some people's bizarre numerical hallucinations shed light on the fascinat-
ing peculiarities of our mental representation of numbers. An organ specialized
in the perception and representation of numerical quantities lies anchored in our
brains. Its characteristics unequivocally connect it to the protonurnerical abilities
found in animals and in infants. It can accurately code only sets whose numerosi-
ty does not exceed 3, and it tends to confuse numbers as they get larger and clos-
er. It also tends to associate the range of numerical quantities with a spatial map,
thus legitimizing the metaphor of a mental number line oriented in space.

Obviously, compared to babies and animals, human adults have the advantage
of being able to convey numbers using words and digits. We will see in the next
chapters how language eases the computation and communication of precise
numerical quantities. However, the availability of precise number notations does
not obliterate the continuous and approximate representation of quantities with
which we are endowed. Much to the contrary, experiments show that the adult
human brain, whenever it is presented with a numeral, rushes to convert it into
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an internal analogical magnitude that preserves the proximity relations between
quantities. This conversion is automatic and unconscious. It allows us to retrieve
immediately the meaning of a symbol such as 8—a quantity between 7 and 9,
closer to 10 than to 2, and so on.

A quantitative representation, inherited from our evolutionary past, underlies
our intuitive understanding of numbers. If we did not already possess some inter-
nal non-verbal representation of the quantity "eight," we would probably be
unable to attribute a meaning to the digit 8. We would then be reduced to purely
formal manipulations of digital symbols, in exactly the same way that a computer
follows an algorithm without ever understanding its meaning.

The number line that we use to represent quantities clearly supports a limited
form of intuition about numbers. It encodes only positive integers and their prox-
imity relations. Perhaps this is the reason not only for our intuitive grasp of the
meaning of integers, but also for our lack of intuition concerning other types of
numbers. What modern mathematicians call numbers includes zero, negative
integers, fractions, irrational numbers such as n, and complex numbers such as
i = v-1. Yet all of these entities, except perhaps the simplest fractions such as 1/2 or
1/4, posed extraordinary conceptual difficulties to mathematicians in centuries
past—and they still impose great hardship on today's pupils.

For Pythagoras and his followers, five centuries before Christ, numbers were
limited to positive integers, excluding fractions or negative numbers. Irrational
quantities such as v2 were judged to be so counterintuitive that a legend says
Hippasus of Metapontas was thrown overboard for proving their existence and
thus shattering the Pythagorean view of a universe ruled by integers. Neither
Diophantes, nor later Indian mathematicians, despite their mastery of calculation
algorithms, accepted negative numbers for the solution of equations. For Pascal
himself, the subtraction 0-4, whose result is negative, was pure nonsense. As for
complex numbers, which were invented by Jerome Cardan in Italy in 1545 and
which involve taking the square root of negative numbers their status unleashed
a storm of protest that lasted over a century. We owe to Descartes, who rejected
them, the epithet of "imaginary numbers," while De Morgan judged them to be
"devoid of meaning, or rather self-contradictory and absurd." Only after solid
mathematical foundations were established did these types of numbers gain
acceptance in the mathematical community.

1 would like to suggest that these mathematical entities are so difficult for us to
accept and so defy intuition because they do not correspond to any preexisting
category in our brain. Positive integers naturally find an echo in the innate mental
representation of numerosity; hence a four-year-old can understand them. Other
sorts of numbers, however, do not have any direct analogue in the brain. To really
understand them, one must piece together a novel mental model that provides for
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intuitive understanding. This is exactly what teachers do when they introduce
negative numbers with such metaphors as temperatures below zero, money bor-
rowed from the bank, or simply a leftward extension of the number line. This is
also why the English mathematician John Wallis, in 1685, made a unique gift to
the mathematical community when he introduced a concrete representation of
complex numbers—he first saw that they could be envisioned as a plane where
the "real" numbers dwelled along a horizontal axis. To function in an intuitive
mode, our brain needs images—and as far as number theory is concerned, evolu-
tion has endowed us with an intuitive picture only of positive integers.
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The Language of
Numbers

I observe that when we mention any great number, such as a
thousand, the mind has generally no adequate idea of it, but

only a power of producing such an idea by its adequate idea of
the decimals, under which the number is comprehended.

David Hume, A Treatise of Human Nature

S
uppose that our only mental representation of number were an approxi-
mate accumulator similar to the rat's. We would have rather precise no-
tions of the numbers 1, 2, and 3. But beyond this point, the number line

would vanish into a thickening fog. We could not think of number 9 without con-

fusing it with its neighbors 8 and 10. Even if we understood that the circumfer-

ence of a circle divided by its diameter is a constant, the number would only be

known to us as "about 3." This fuzziness would befuddle any attempt at a mone-
tary system, much of scientific knowledge, indeed human society as we know it.

How did Homo sapiens alone ever move beyond approximation? The uniquely
human ability to devise symbolic numeration systems was probably the most

crucial factor. Certain structures of the human brain that are still far from under-
stood enable us to use any arbitrary symbol, be it a spoken word, a gesture, or a

shape on paper, as a vehicle for a mental representation. Linguistic symbols parse

the world into discrete categories. Hence they allow us to refer to precise num-
bers and to separate them categorically from their closest neighbors. Without
symbols, we might not discriminate 8 from 9. But with the help of our elaborate
numerical notations, we can express thoughts as precise as "The speed of light is

Chapter 4

9 1
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299,792,458 meters per second." It is this transition from an approximate to a
symbolic representation of numbers that I intend to describe in this chapter—a
transition that occurs both in cultural history and in the mind of any child who
acquires the language of numbers.

A Short History of Number

When our species first began to speak, it may have been able to name only the
numbers 1, 2, and perhaps 3. Oneness, twoness, and threeness are perceptual
qualities that our brain computes effortlessly, without counting. Hence giving
them a name was probably no more difficult than naming any other sensory
attribute, such as red, big, or warm.

The linguist James Hurford has gathered considerable evidence for the antiq-
uity and special status of the first three number words. In languages with case
and gender inflections, "one," "two," and "three" are often the only numerals
that can be inflected. For instance, in old German "two" can be zwei, zwo, or
zween depending on the grammatical gender of the object that is being counted.
The first three ordinals also have a particular form. In English, for instance, most
ordinals end with "th" (fourth, fifth, etc.), but the words "first," "second," and
"third" do not.

The numbers 1, 2, and 3 are also the only ones that can be expressed by gram-
matical inflections instead of words. In many languages, words do not just bear
the mark of the singular or plural. Distinct word endings are also used to distin-
guish two items (dual) versus more than two items (plural), and a few languages
even have special inflections for expressing three items (trial). In ancient Greek,
for instance, "o hippos" meant the horse, "to hippo" the two horses, and "toi hip-
poi" an unspecified number of horses. But no language ever developed special
grammatical devices for numbers beyond 3.

Finally the etymology of the first three numerals also bears testimony to their
antiquity. The words for "2" and "second" often convey the meaning of "anoth-
er," as in the verb to second or the adjective secondary. The Indo-European root of
the word "three" suggests that it might have once been the largest numeral, syn-
onymous with "a lot" and "beyond all others"—as in the French tres (very) or the
Italian troppo (too much), the English through, or the Latin prefix trans-. Hence
perhaps the only numbers known to Indo-Europeans were "1," "1 and another"
(2), and "a lot" (3 and beyond).

Today we find it hard to imagine that our ancestors might have been confined
to numbers below three. Yet this is not implausible. Up to this very day, the
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Warlpiris, an aboriginal tribe from Australia, have names only for the quantities 1,
2, some, and a lot. In the domain of colors, some African languages distinguish
only between black, white, and red. Needless to say, these limits are purely lexical.
When Warlpiris come into contact with Occidentals, they easily learn English
numerals. Thus, their ability to conceptualize numbers is not limited by the
restricted lexicon of their language, nor (obviously) by their genes. Although
there is a dearth of experiments on this topic, it seems likely that they possess
quantitative concepts of numbers beyond three, albeit nonverbal and perhaps
approximate ones.

How did human languages ever move beyond the limit of 3? The transition
toward more advanced numeration systems seems to have involved the counting
of body parts. All children spontaneously discover that their fingers can be put
into one-to-one correspondence with any set of items. One merely has to raise
one finger for the first item, two for the second, and so on. By this mechanism,
the gesture of raising three fingers comes to serve as a symbol for the quantity
three. An obvious advantage is that the required symbols are always "handy"—in
this numeration system the digits are literally the speaker's digits!

Historically then, digits and other parts of the body have supported a body-
based language of numbers, which is still in use in some isolated communities.
Many aboriginal groups, who lack spoken words for numbers beyond three, pos-
sess a rich vocabulary of numerical gestures fulfilling the same role. The natives
of the Torres straights, for instance, denote numbers by pointing to different
parts of their body in a fixed order (Figure 4.1): from the pinkie to the thumb on
the right hand (numbers 1 to 5), then up the right arm and down the left arm (6
to 12), through to the fingers of the left hand (13 to 17), the left toes (18 to 22),
the left and right legs (23 to 28), and finally the right toes (29 to 33). A few decades
ago, in a school in New Guinea, teachers were puzzled to see their aboriginal
pupils wriggling during mathematics lessons, as if calculations made them itch.
As a matter of fact, by rapidly pointing to parts of their body, the children were
translating into their native body language the numbers and calculations being
taught to them in English.

In more advanced numeration systems, pointing is not needed anymore:
Naming a body part suffices to evoke the corresponding numeral. Thus in many
societies in New Guinea, the word six is literally "wrist," while nine is "left
breast." Likewise, in countless languages throughout the world, from Central
Africa to Paraguay, the etymology of the word "five" evokes the word "hand."

A third step bridges the gap that separates these body-based languages from
our modern "disembodied" number words. Body pointing suffers from a serious
limitation: Our fingers form a finite set, indeed a rather small one. Even if we
count toes and a few other salient parts of our bodies, the method is hopeless for
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Figure 4.1. The natives of the Torres Straight denote numbers by pointing towards a precise part

of their body. (After Ifrah 1994.)

numbers beyond thirty or so. It is highly impractical to learn an arbitrary name
for each number. The solution is to create a syntax that allows larger numerals to
be expressed by combining several smaller ones.

Number syntax probably emerged spontaneously from an extension of body-
based numeration. In societies such as the native tribes of Paraguay, the number
6, instead of being given an arbitrary name such as "wrist," is expressed as "one
on the other hand." Since the word "hand" itself means 5, by the very nature of
their body language these people are led to express 6 as "5 and 1." Similarly, the
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number 7 is "5 and 2," and so on all the way to 10, which is simply expressed as
"two hands" (two 5s). Behind this elementary example lurk the basic organizing
principles of modern number notations: the choice of a base number (here num-
ber 5), and the expression of larger numbers by means of a combination of sums
and products. Once discovered, these principles can be extended to arbitrarily
large numbers. Eleven, for instance, might be expressed as "two hands and a fin-
ger" (two 5s and 1), while 22 will be "four hands and two fingers."

Most languages have adopted a base number, such as 10 or 20, whose name is
often a contraction of smaller units. In the Ali language, for instance, the word
"mboona," which means 10, is a contraction of "moro boona"—literally "two
hands." Once the new form is frozen, it can itself enter into more complex con-
structions. Thus the word for 21 could be expressed as "two 10s and 1". A similar
process of contraction accounts for the irregular construction of some numerals
such as 11, 12, 13, or 50 in present-day English. These words were once transpar-
ent compounds—"1 (and) 10," "2 (and) 10," "3 (and) 10," "5 10s"—before they
were distorted and contracted.

As for base 20, it probably reflects an ancient tradition of counting on fingers
and toes. This explains why the same word often denotes number 20 and "a
man," as in some Mayan dialects or in Greenland Eskimo. A number such as 93
may then be expressed by a short sentence such as "after the fourth man, 3 on the
first foot"—a twisted syntax indeed, but hardly more so than the modern French
expression "quatre-vingt-treize" (4x20+13). It is through such means that humans
eventually learned to express any number with perfect accuracy.

Keeping a Permanent Trace of Numerals

Beyond giving numbers a name, to keep a durable record of them was also vital.
For economical and scientific reasons, humans quickly developed writing sys-
tems that could maintain a permanent record of important events, dates, quanti-
ties, or exchanges—anything, in brief, that could be denoted by a number. Thus,
the invention of written number notations probably unfolded in parallel with the
development of oral numeration systems.

To understand the origins of number writing systems, we have to travel far
back in time. Several bones from the Aurignacian period (35,000 to 20,000 B.C.)
reflect the oldest method of writing numbers: the representation of a set by an
identical number of notches. These bones are engraved with series of parallel
notches, sometimes grouped in small packets. This might have been early
humans' way of keeping a hunting record by carving one notch for each animal



Beyond Approximation

Figure 4.2. This small bone plaque was unearthed in 1969 from the Grotte du Tai in southern

France. Dated from the Upper Paleolithic (ca. 10,000 BC), it is engraved with regularly aligned

marks. Because some of the notches are grouped into subsets of about 29, the plaque is thought to

have recorded the number of days elapsing between two lunations. (Reprinted from Marshack 1991

by permission of the publisher; copyright © 1991 by Cambridge University Press.)

captured. The patient decoding of the periodic structure of notches on a slightly
more recent bone plaque even suggests that it might have been used as a lunary
calendar that kept track of how many days had elapsed between two full moons
(Figure 4.2).

The principle of one-to-one correspondence has been reinvented over and
over again throughout the world as one of the simplest and most basic of numer-
ical records. The Sumerians filled spheres of clay with as many marbles as the
objects they counted; the Incas recorded numbers by tying knots on strings,
which they kept as archives; and the Romans used vertical bars to form their first
three digits. Even recently, some bakers still used notched sticks to keep track of
their clients' debts. The word "calculation" itself comes from the Latin word cal-
culus, which means "pebble," and draws us back to the time when numbers were
manipulated by moving pebbles on an abacus.

Despite its deceptive simplicity, the one-to-one correspondence principle is a
remarkable invention. It offers a durable, precise, and abstract representation of
numbers. A series of notches can serve as an abstract numerical symbol and stand
for any collection of items, be it livestock, people, debts, or full moons. It also
enables humans to overcome the limitations of their perceptual apparatus.
Humans, like pigeons, cannot distinguish forty-nine objects from fifty. Yet a stick
engraved with forty-nine notches keeps a permanent track of this exact number.
To verify whether a count is correct, one merely has to go through the objects
one by one and move forward by one notch for each object. One-to-one corre-
spondence therefore provides a precise representation of numbers too large to be
accurately memorized on the mental number line.

Obviously, one-to-one correspondence also has its limitations. Series of notch-
es are notoriously inconvenient to read or to write. As we have seen earlier, the
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human visual system is unable to apprehend at a glance the numerosity of a set of
more than three items. Hence an undifferentiated series of thirty-seven notches is
as difficult to perceive as the set of thirty-seven sheep it stands for! Humans were
therefore quickly drawn to breaking the monotony of number series by grouping
the notches and by introducing novel symbols, in effect breaking a large number
into something easier to read at a glance. This is exactly what we do when we
strike out each group of five strokes, thus turning them into a visually salient
group. Using this technique, the number 21 looks like I, unde-
niably a more readable notation than .

However, this system is convenient only on paper. When engraving a stick,
carving in the wood's length is tedious. Cutting the wood at an angle is so much
easier, and that is exactly the method that shepherds adopted thousands of years
ago: They invariably selected symbols made up of oblique bars, such as V or X, to
denote the numbers 5 and 10. As you may guess, this is the origin of Roman
numerals. Their geometric shapes were determined by how easily they could be
carved on a wooden stick. Other writing media have imposed different shapes.
For instance, the Sumerians, who wrote on sheets of soft clay, adopted for their
numerals the simplest shapes that could be formed with a pencil,—namely,
round or cylindrical notches as well as the famous nail-shaped or "cuneiform"
characters.

By adding together several of these symbols, other numbers may be formed.
In Roman notation, 7 is written as 5+1 + 1 (VII). This additive principle, according
to which the value of a number is equal to the sum of its component digits,
underlies many number notations, including those of the Egyptians, Sumerians,
and Aztecs. Additive notation saves time and space, because a number such as
38, which requires thirty-eight identical symbols in any concrete notation based
on one-to-one correspondence, now mobilizes only seven Roman digits
(38=10+10+10+5+1 + 1 + 1 or XXXVIII). Still, reading and writing remain a tedious
chore. Compactness can be improved a bit by introducing special symbols such
as numbers L (50) and D (500). Repetitions may be totally avoided if one is will-
ing to use a distinct symbol for each of the numbers 1 to 9, 10 to 90, and 100 to
900. This solution was adopted by the Greeks and the Jews, who used letters of
the alphabet instead of numbers. Using this trick, a number as complex as 345
can be written with only three letters (TME in Greek, or 300+40+5). The user,
however pays a heavy cost: Considerable effort is needed to memorize the nu-
merical value of the 27 symbols required to express all numbers from 1 to 999.

In retrospect, it seems obvious that addition alone cannot suffice to express
very large numbers. Multiplication becomes indispensable. One of the first
hybrid notations, mixing addition and multiplication, appeared in Mesopotamia
over four millennia ago. Instead of expressing a number such as 300 by repeating
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the symbol for 100 three times, as in Roman numerals (CCC), the inhabitants of
the city of Mari simply wrote down the symbol for "three" followed by the sym-
bol for "hundred." Unfortunately, they still wrote units and decades using the
addition principle, so their notation remained far from concise. The number
2,342, for instance, was literally written down as "1 + 1 thousand, 1 + 1 + 1 hundred,
10+10+10+10, 1 + 1".

The power of the multiplication principle was refined in later number nota-
tions. In particular, five centuries ago the Chinese invented a perfectly regular
notation that has been preserved up to this day. It consists of only 13 arbitrary
symbols for the digits 1 through 9 and the numbers 10, 100, 1,000, and 10,000.
The number 2,342 is simply written down as "2 1000 3 100 4 10 2", a word-for-
word transcription of the oral expression "two thousand three hundred forty-
two" (forty being "four ten" in Chinese). Thus writing, at this stage, becomes a
direct reflection of the oral numeration system.

The Place-Value Principle

One final invention greatly expanded the efficacy of number notations: the place-
value principle. A number notation is said to obey the place-value principle when
the quantity that a digit represents varies depending on the place it occupies in
the number. Thus the three digits that make up number 222, though identical,
refer to different orders of magnitude: two hundreds, two tens, and two units. In
a place-value notation, there is a privileged number called the base. We now use
base 10, but this is not the only possibility. Successive places in the number repre-
sent successive powers of the base, from units (10°= 1), to tens (101 =10), hundreds
(102 =100), and so on. The quantity that a given number expresses is obtained by
multiplying each digit by the corresponding power of the base and then adding
up all the products. Hence number 328 represents the quantity 3x100 + 2x10 +8x1.

Place-value coding is a must if one wants to perform calculations using simple
algorithms. Just try to compute XIV x VII using Roman numerals! Calculations are
also inconvenient in the Greek alphabetical notation, because nothing betrays
that number N (50) is ten times greater than number E (5). This is the main rea-
son the Greeks and the Romans never performed computations without the help
of an abacus. By contrast, our Arabic numerals, based on the place-value princi-
ple, make the magnitude relations between 5, 50, 500, and 5,000 completely
transparent. Place-value notations are the only ones that reduce the complexity
of multiplication to the mere memorization of a table of products from 2x2 up to
9x9. Their invention revolutionized the art of numerical computation.
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While four civilizations seem to have discovered place-value notation, three of
them never quite reached the simplicity of our current Arabic numerals. For this
notation only becomes highly efficient in conjunction with three other inven-
tions: a symbol for "zero," a unique base number, and the discarding of the addi-
tion principle for the digits 1 through 9. Consider, for instance, the oldest
place-value system known, devised by Babylonian astronomers eighteen cen-
turies before Christ. Their base number was 60. Hence a number such as 43,345,
which is equal to 12x602 + 2x60 + 25, was expressed by concatenating the symbols
for 12, 2, and 25.

In principle, sixty distinct symbols would have been needed, one for each of
the "digits" 0 to 59. Yet obviously it would have been impractical to learn sixty
arbitrary symbols. Instead, the Babylonians wrote down these numbers using an
additive base-10 notation. For instance, the "digit" 25 was expressed as 10+10 +
1 + 1 + 1+1 + 1. Eventually, the number 43,345 was thus rendered by an obscure
sequence of cuneiform characters that literally meant 10+1 + 1 [implication x602],
1 +1 [implication x60], 10+10+ 1 + 1 + 1 + 1 + 1. Such a mixture of additive and place-val-
ue coding, with two bases 10 and 60, turned the Babylonian notation into an awk-
ward system understandable only to a cultivated elite. Still, it was a remarkably
advanced numeration for its time. The Babylonian astronomers used it very skill-
fully for their celestial calculations, whose accuracy remained unsurpassed for
more than a thousand years. Its success was due in part to its simple representa-
tion of fractions: Because 2, 3, 4, 5, and 6 are divisors of the base 60, the fractions
l/2, 1/3, l/4, 1/5 and 1/6 all had a simple sexagesimal expression.

Judged by today's standards, the Babylonian system had one final drawback:
For fifteen centuries, it lacked a zero. What is a zero good for? It serves as a place-
holder that denotes the absence of units of a given rank in a multidigit numeral.
For instance, in Arabic notation the number "503" means five hundreds, no tens,
and three units. Lacking a zero, Babylonian scientists simply left a blank at the
place where a digit should have appeared. This meaningful void was a recurring
source of ambiguities. The numbers 301 (5x60+1), 18,001 (5x602+l) and 1,080,001
(5x603 +1) were confusedly expressed by similar strings: 51, 5 1 (with one blank),
and 5 1 (with two blanks). Hence the absence of a zero was the cause of many
errors in calculation. Worse, an isolated digit such as "1" had multiple meanings.
It could mean quantity 1, of course, but also "1 followed by a blank" or 1x60, or
even "one followed by two blanks" or 1 x602 =3,600, and so on. Only the context
could determine which interpretation was correct. Not until the third century
before Christ did the Babylonians finally introduce a symbol to fill this gap and
explicitly denote absent units. Even then, this symbol served only as a placehold-
er. It never acquired the meaning of a "null quantity" or of "the integer immedi-
ately below 1" which we attribute to it today.
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While Babylonian astronomers' place-value notation was apparently lost in

the collapse of their civilization, three other cultures later reinvented remarkably

similar systems. Chinese scientists, in the second century before Christ, devised a

place-value code devoid of the digit 0 and using the bases 5 and 10. Mayan

astronomers, in the second half of the first millennium, computed with numbers

written in a mixture of base 5 and 20 and with a full-fledged digit 0. And Indian

mathematicians, finally, bequeathed humanity the place-value notation in base 10

that is now in use throughout the world.

It seems a bit unfair to call 'Arabic numerals" an invention originally due to

the ingenuity of the Indian civilization. Our number notation is called 'Arabic"

merely because the Western world discovered it for the first time through the

mathematical writings of the great Persian mathematicians. Many of the modern

techniques of numerical calculation derived from the work of Persian scientists.

The word "algorithm" was named after a work by one of the them, Mohammed

ibn Musa al-Khuwarizmi. His most famous book was a treatise for solving linear

equations, Al-jabr w'al muqabala (On Reducing and Simplifying), one of the few

books whose publication founded a new science, "algebra." Yet for all their inven-

tiveness, the discoveries of the Persians could not have seen the light without the

help of the Indian number notation.

A particular homage should be paid to a unique innovation in the Indian nota-

tion, one that was lacking in all other place-value systems: the selection of ten arbi-

trary digits whose shapes are unrelated to the numerical quantities they represent.

At first glance, one might think that using arbitrary shapes should be a disad-

vantage. A series of strokes seem to provide a more transparent way of denoting

numbers, one that is easier to learn. And perhaps this was the implicit logic of the

Sumerian, Chinese, and Mayan scientists. However we have seen in the preceding

chapter that it is incorrect. The human brain takes longer to count five objects

than to recognize an arbitrary shape and associate it with a meaning. The peculiar

disposition of our perceptual apparatus for quickly retrieving the meaning of an

arbitrary shape, which I have dubbed the "comprehension reflex," is admirably

exploited in the Indian-Arabic place-value notation This numeration tool, with its
ten easily discernible digits, tightly fits the human visual and cognitive system.

An Exuberant Diversity of Number Languages

Nowadays when people of almost any country write down a number, they adopt

the same convention and employ the base-ten Arabic notation. Only the shape of
digits remains slightly variable. Instead of our Arabic digits, some Middle Eastern
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countries such as Iran use another set of shapes referred to as "Indian digits."
Even there, however, the standard Arabic notation is gaining ground. Its victory
has little to do with imperialism or the establishment of commercial norms. If
the evolution of written numeration converges, it is mainly because place-value
coding is the best available notation. So many of its characteristics can be praised:
its compactness, the few symbols it requires, the ease with which it can be
learned, the speed with which it can be read or written, the simplicity of the cal-
culation algorithms it supports. All justify its universal adoption. Indeed, it is hard
to see what new invention could ever improve on it.

No such convergence is found for oral numeration. Although the vast majori-
ty of human languages possess a number syntax based on a combination of sums
arid products, in detail the diversity of numeration systems is striking. First of all,
a variety of bases are used. In the Queensland district of Australia, some aborig-
ines are still confined to base 2. Number 1 is "ganar," 2 is "burla," 3 "burla-ganar,"
and 4 "burla-burla." In old Sumer, by contrast, bases 10, 20, and 60 were concur-
rently used. Hence number 5,566 was expressed as "sar (3,600) ges-u-es (60x10x3)
ges-min (60x2) nismin (20x2) as (6)", or 3600 + 60x10x3+ 2x60 + 2x20 + 6 = 5,566. Base
20 also had its adepts: It ruled the Aztec, Mayan, and Gaelic languages and is still
in use in Eskimo and Yoruba. Traces of it can still be found in French, in which 80
is "quatre-vingt" (four twenties), and in Elizabethan English, which often counted
in scores (twenty).

Although base 10 has now taken over most languages, number syntax remains
highly variable. The prize for simplicity goes to Asian languages such as Chinese,
whose grammar is a perfect reflection of decimal structure. In such languages
there are only nine names for numbers 1 through 9 (yi, er, san, si, wu, liu, qi, ba,
arid jiu), to which one should add four multipliers 10 (shi), 100 (bai), 1,000 (qian),
and 10,000 (wan). In order to name a number, one just reads its decomposition in
base 10. Thus 13 is "shi san" (ten three), 27 "er shi qi" (two ten seven), and 92,547
"shi wan er qian wu bai si shi qi" (nine myriads two thousands five hundreds four
tens seven).

This elegant formalism contrasts sharply with the 29 words needed to express
the same numbers in English or in French. In these languages, the numbers 11
through 19 and the decades from 20 to 90 are denoted by special words (eleven,
twelve, twenty, thirty, etc.) whose appearance is not predictable from that of oth-
er numerals. No need to mention the even stranger peculiarities of French, with
its awkward words "soixante-dix" (sixty-ten, or 70) and "quatre-vingt-dix" (four-
twenty-ten, or 90). French also has confusing elision and conjunction rules
involving the number 1: one says "vingt-et-un" (twenty-and-one) rather than
"vingt-un," yet 22 is "vingt-deux" rather than "vingt-et-deux," and 81 is "quatre-
vingt-un" and not "quatre-vingt-et-un." Likewise, 100 is "cent" rather than "un
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cent." Another eccentricity is the systematic reversal of decades and units in
Germanic languages, where 432 becomes "vierhundertzweiunddreiBig" (four
hundred two and thirty).

What are the practical consequences of this exuberant diversity of numerical
languages? Are all languages equivalent? Or are some number notations better
adapted to the structure of our brains? Do certain countries, by virtue of their
numeration system, start out with an advantage in mathematics? This is no trivial
matter in the current period of fierce international competition, in which numer-
acy is a key factor to success. As adults, we are largely unaware of the complexity
of our numeration system. Years of training have tamed us into accepting that
76 should be pronounced "seventy-six" rather than, say, "seven ten six" or "sixty-
sixteen." Hence we can't objectively compare our language with others anymore.
Rigorous psychological experiments are needed to measure the relative efficacy
of various numeration systems. Surprisingly, these experiments repeatedly
demonstrate the inferiority of English or French over Asian languages.

The Cost of Speaking English

Read the following list aloud: 4, 8, 5, 3, 9, 7, 6. Now close your eyes and try to
memorize the numbers for twenty seconds before reciting them again. If your
native language is English, you have about a 50% chance of failure. If you are
Chinese, however, success is almost guaranteed. As a matter of fact, memory
span in China soars to about nine digits, while it averages only seven in English.
Why this discrepancy? Are speakers of Chinese more intelligent? Probably not,
but their number words happen to be shorter. When we try to remember a list of
digits, we generally store it using a verbal memory loop (this is why it is difficult
to memorize numbers whose names sound similar, such as "five" and "nine" or
"seven" and "eleven"). This memory can hold data only for about two seconds,
forcing us to rehearse the words in order to refresh them. Our memory span is
thus determined by how many number words we can repeat in less that two sec-
onds. Those of us who recite faster have a better memory.

Chinese number words are remarkably brief. Most of them can be uttered in
less than one-quarter of a second (for instance, 4 is "si" and 7 "qi"). Their English
equivalents—"four," "seven"—are longer: pronouncing them takes about one-
third of a second. The memory gap between English and Chinese apparently is
entirely due to this difference in length. In languages as diverse as Welsh, Arabic,
Chinese, English, and Hebrew, there is a reproducible correlation between the
time required to pronounce numbers in a given language and the memory span
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of its speakers. In this domain, the prize for efficacy goes to the Cantonese dialect
of Chinese, whose brevity grants residents of Hong Kong a rocketing memory
span of about 10 digits.

In summary, the "magical number 7," which is so often heralded as a fixed
parameter of human memory, is not a universal constant. It is merely the stan-
dard value for digit span in one special population of Homo sapiens on which
more than 90% of psychological studies happen to be focused, the American col-
lege undergraduate! Digit span is a culture- and training-dependent value, and
cannot be taken to index a fixed biological memory size parameter. Its variations
from culture to culture suggest that Asian numerical notations, such as Chinese,
are more easily memorized than our Western systems of numerals because they
are more compact.

If you do not speak any Chinese, there is still hope. Several tricks are available
to increase your memory for digits. First of all, always memorize numbers using
the shortest possible sequence of words. A long number such as 83,412 is often
best recalled by reciting it digit by digit, as with a phone number. Second, try
grouping the digits into small blocks of two or three. Your working memory will
jump to about twelve digits if you group them in four blocks of three. Phone
numbers in the United States, with their division into a three-digit area code and
then three groups of three, two, and two digits, as in "503 485 98 31," already
make use of these stratagems. In France, by contrast, we have the bad habit of
expressing phone numbers with two-digit numerals. For instance, we read 85 98
31 as "eighty-five ninety-eight thirty-one"—probably the most memory-ineffi-
cient method that one could think of!

A third trick is to bring the number back to familiar ground. Look for increas-
ing or decreasing series of digits, familiar dates, zip codes, or any other informa-
tion that you already know. If you can recode the number using only a few
familiar items, you should easily remember them. After about 250 hours of train-
ing under the guidance of psychologists William Chase and K. Anders Ericsson,
an American student was able to extend his memory span up to an extraordinary
eighty digits using this receding method. He was an excellent long-distance run-
ner and had compiled a large mental database of record running times. He there-
fore stored the eighty digits to be remembered, broken down into groups of
three or four, as a series of record times in long-term memory!

Using these guidelines, you should have little difficulty memorizing phone
numbers. But unless you are Chinese, you are still in for a hard time. Number
names also play a critical role in counting and calculating, and here again bad
marks can be attributed to languages with the longest number names. For in-
stance, it takes a Welsh pupil one second and a half more than an English pupil,
on average, to compute 134+88. For equal age and education, this difference
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seems solely due to the time taken to pronounce the problem and the intermedi-

ate results: Welsh numerals happen to be considerably longer than the English.

English is certainly not the optimum, though, because several experiments have

shown that Japanese and Chinese children calculate much faster than their

American peers.

It can be difficult, of course, to tease apart the effects of language from those

of education, number of hours at school, parental pressure, and so on (in fact,

good evidence exists that the organization of Japanese mathematics lessons is in

many ways superior to that of the standard U.S. school system). However, many

such variables can be left aside by studying language acquisition in children who

have not yet been to school. All children are confronted with the challenging task

of discovering, by themselves, the lexicon and grammar of their maternal lan-

guage. How do they ever acquire the rules of French or German by mere expo-

sure to phrases such as "soixante-quinze" or "fiinfundsiebzig"? And how can a

French child discover the meanings of "cent deux" and "deux cent"? Even if the

child is a born linguist and if, as postulated by Noam Chomsky and Steven Pinker,

the brain comes equipped with a language organ that makes learning the most

abstruse linguistic rules a matter of instinct, the induction of number formation

rules is by no means instantaneous and varies from language to language.

In Chinese, for instance, once you have learned the number words up to ten,

the others are easily generated by a simple rule ( 1 1 = ten one, 12 = ten two ... ,

20 = two ten, 21 = two ten one, etc.). In contrast, American children have to learn

by rote, not just the numerals from 1 to 10, but also those from 11 to 19, and also

the tens numbers from 20 to 90. They must also discover for themselves the mul-

tiple rules of number syntax that specify, for instance, that "twenty forty" or "thir-

ty eleven" are invalid sequences of number words.
In a fascinating experiment, Kevin Miller and his colleagues asked matched

groups of American and Chinese children to recite the counting sequence. Start-

lingly, the linguistic difference caused American children to lag as much as one

year behind their Chinese peers. When they were four, Chinese children already

counted up to 40 on average. At the same age, American children painfully count-
ed up to 15. It took them one year to catch up and reach 40 or 50. They were not
just globally slower than the Chinese; up to the number 12, both groups stood on

an equal footing. But when they reached the special numbers "13" and "14,"

American children suddenly stumbled, while the Chinese, helped by the unfailing
regularity of the language, moved right along with much less trouble (Figure 4.3).

The Miller experiment shows beyond a doubt that the opacity of a numera-
tion system takes an important toll on language acquisition. Another proof
comes from the analysis of counting errors. Haven't we all heard American chil-
dren recite "twenty-eight, twenty-nine, twenty-ten, twenty-eleven," and so on?
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Figure 4.3. Kevin Miller and his colleagues asked American and Chinese children to recite num-

bers as far as they could. At a matched age, Chinese children could count much farther than their

American counterparts. (Adapted from Miller etal. 199} by permission of the publisher; copyright

© 1995 by Cambridge University Press.)

Such grammatical errors, telltale signs of a poor induction of the rules of number
syntax, are unheard of in Asian countries.

The influence of numeration systems carries through into subsequent school
years. The organization of spoken Chinese numerals directly parallels the struc-
ture of written Arabic numerals. Hence, Chinese children experience much less
difficulty than their American counterparts in learning the principles of place-val-
ue notation in base ten. When asked to form number 25 using some unit cubes
and some bars of 10, Chinese schoolboys readily select two bars of 10 and five
units, suggesting that they understand base ten. At a matched age, American chil-
dren behave differently. Most of them laboriously count twenty-five units, thus
failing to take advantage of the shortcut provided by the groups of 10. Worse yet,
if one provides them with a bar comprising twenty units, they use it more fre-
quently than two bars of ten. Thus they seem to attend to the surface form of the
word "twenty-five," while the Chinese already master their deeper base-10 struc-
ture. Base 10 is a transparent concept in Asian languages, but is a real headache
for Western children.

These experimental findings impose a strong conclusion: Western numer-
ation systems are inferior to Asian languages in many respects—they are hard-
er to keep in short-term memory, slow down calculation, and make the acquisi-
tion of counting and of base ten more difficult. Cultural selection should long
have eliminated constructions as absurd as the French "quatre-vingt-dix-sept."
Unfortunately, the normalization efforts of our schools and academies have put a
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stop to the natural evolution of languages. If children could vote, they would

probably favor a widespread reform of numerical notations and the adoption of

the Chinese model. Would such a revision be less Utopian than the ill-fated

spelling reforms? We have at least one historical example of a successful major

linguistic reform. At the beginning of the twentieth century, the Welsh willingly

relinquished their old numeration system, which was more complex even than

present-day French, and selected instead a simplified notation quite similar to

Chinese. Unfortunately, Welsh changed only to fall prey to another error: The

new Welsh number words, while grammatically regular and thus easy to learn,

are so long that memory suffers! Psychological experiments would probably dic-

tate the adoption of a well-tested numeration system such as Mandarin Chinese,

but national interests make this a rather distant and unlikely prospect.

Learning to Label Quantities

Acquiring a number lexicon and syntax is not everything. It is not particularly

useful to know that "two hundred and thirty" is a valid English phrase while "two

thirty and hundred" is not. Above all, children must learn what these numerals

mean. The power of numeration systems stems from their ability to establish

precise links between linguistic symbols and the quantities they express. A child

may well recite numerals up to 100, but is only parroting unless he or she also

knows what magnitudes they stand for. How then do children ever learn the

meaning of /wan/, /siks/ or /eit/?

A first basic problem confronting a child is to recognize that these words refer

to number rather than to color, size, shape, or any other dimension of the envi-

ronment. Consider the phrases "the three sheep" and "the big sheep." A child

who hears them for the first time and who does not know the meaning of the

words "three" and "big" has no way of telling that "big" refers to the physical size

of each sheep, while "three" refers to the cardinal of the set of sheep.
Experiments show that by two and a half years of age, American children

already differentiate number words from other adjectives. When given a choice
between a picture of a single red sheep and another showing three blue sheep, chil-

dren readily point to the first when they are told, "Show me the red sheep," and to
the second when told, "Show me the three sheep." By that age, children already
know that "three" applies to a collection of items rather than to a single item. At
the same age, children also order number words and other adjectives correctly.

They say "three little sheep," but never "little three sheep." Early on, then, children
know that number words belong to a special category distinct from other words.
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How did they find this out? Probably by exploiting all the available cues, be
they grammatical or semantic. Grammar alone may be of precious help. Suppose
that a mother tells her baby, "Look, Charlie, three little doggies." Baby Charlie
may then infer that the word "three" is a special kind of adjective because other
adjectives such as "nice," are always said with an article—"the nice little dog-
gies." The fact that the word "three" does not require an article may suggest that
"three" applies to the entire collection of little doggies, and that therefore it may
be a number or a quantifier like "some" or "many."

Of course such reasoning is of little help for determining the precise quantity
to which the word "three" refers. Indeed, it appears that for a whole year, chil-
dren realize that the word "three" is a number without knowing the precise value
it refers to. When they are ordered, "Give me three toys," most of them simply
grasp a pile without caring about the exact number. If one lets them choose
between a group of two and a group of three toys, they also respond at random
—although they never select a card showing a single object. They know how to
recite number words, and they sense that these words have to do with quantity,
but they ignore their exact meaning.

Semantic cues are probably critical in order to overcome this stage arid to
determine the precise quantity that is meant by the word "three." With a little
luck, Baby Charlie will see the three little doggies his mom is talking about. His
perceptual system, whose sophistication we have discussed in Chapter 2, may
then analyze the scene and identify the presence of several animals, of a small
size, noisy, moving, and numbering about three. (By this I do not mean, of
course, that Charlie already knows that the word "three" applies to this numeros-
ity; I only mean that Charlie's internal non-verbal accumulator has reached the
state of fullness which is typical of sets of three items.)

In essence, all Charlie has to do, then, is to correlate these preverbal represen-
tations with the words he hears. After a few weeks or months, he should realize
that the word "three" is not always uttered in the presence of small things, of ani-
mals, of movement, or of noise; but that it is very often mentioned when his
mental accumulator is in a particular state that accompanies the presence of
three items. Thus, correlations between number words and his prior nonverbal
numerical representations can help him determine that "three" means 3.

This correlation process can be accelerated by the "principle of contrast,"
which stipulates that words that sound different have different meanings. If
Charlie already knows the meaning of the words "doggie" and "small," the prin-
ciple of contrast guarantees him that the unknown word "three" cannot refer to
the size or the identity of the animals. Narrowing down the set of hypotheses
enables him to find out even faster that this word refers to numerosity three.



108 Beyond Approximation

Round Numbers, Sharp Numbers

Once children have acquired the exact meaning of number words, they still have

to grasp some of the conventions governing their use in language. One of them is

the distinction between round numbers and sharp numbers. Let me introduce it

with a joke:

At the museum of natural history, a visitor asks the curator, "How old is this
dinosaur over here?" "Seventy million and thirty-seven years" is the answer. As
the visitor marvels at the accuracy of the dating, the curator explains: "I've
been working here for 37 years, you know, and when I arrived I was told that it
was 70 million years old"!

Lewis Carroll, well-known for his ingenious word games based on logic and

mathematics, often spiced his stories with "numerical non-sense." Here is an

example from his little-known book Sylvie and Bruno Concluded:

"Don't interrupt," Bruno said as we came in. "I'm counting the Pigs in the

field!"

"How many are there?" I enquired.

"About a thousand and four," said Bruno.

"You mean 'about a thousand,'" Sylvie corrected him. "There's no good say-

ing 'and four': you ca'n't be sure about the four!"

'And you're as wrong as ever!" Bruno exclaimed triumphantly. "It's just the
four I can be sure about; 'cause they're here, grubbling under the window!

It is the thousand I isn't pruffickly sure about!"

Why do these exchanges sound eccentric? Because they violate an implicit

and universal principle governing the use of numerals. The principle stipulates

that certain numerals, called "round numbers," can refer to an approximate
quantity while all other numerals necessarily have a sharp and precise meaning.

When one states that a dinosaur is 70 million years old, this value is implicitly
understood to within 10 million years. The rule is that a number's accuracy is giv-

en by its last non-zero digit starting from the right. If I maintain that the population-
tion of Mexico City is 39,000,000, I mean that this number is correct to within a
million, whereas if I give you a value of 39,452,000 inhabitants, I implicitly admit
that it is correct to give or take a thousand.

This convention sometimes leads to paradoxical situations. If a precise quanti-
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ty happens to fall exactly on a round number, just asserting it is not sufficient.
One must supplement it with an adverb or locution that makes its accuracy
explicit—for example, "Today, Mexico has exactly 39 million inhabitants." For the
same reason, the sentence "nineteen is about 20" is acceptable, while "twenty is
about 19" isn't. The phrase "about 19" is a contradiction in terms, for why use a
sharp number such as 19 if one wants to state an estimation?

All the languages of the world seem to have selected a set of round numbers.
Why this universality? Probably because all humans share the same mental appa-
ratus and are therefore all confronted with the difficulty of conceptualizing large
quantities. The larger a number, the less accurate our mental representation of it.
Language, if it wants to be a faithful vehicle for thought, must incorporate de-
vices that express this increasing uncertainty. Round numbers are such a device.
Conventionally, they refer to approximate quantities. The sentence "There are
twenty students in this room" remains true even if there are eighteen or twenty-
two students because the word "twenty" can refer to an extended region of the
number line. This is also why speakers of French find it so natural that "fifteen
days" means "two weeks," although the exact number should be fourteen.

Approximation is so important to our mental life that many other linguistic
mechanisms are available to express it. All languages possess a rich vocabulary of
words for expressing various degrees of numerical uncertainty—about, around,
circa, almost, roughly, approximately, more or less, nearly, barely, and so on. Most
languages have also adopted an interesting construction in which two juxtaposed
numbers, often linked by the conjunction "or," express a confidence interval: two
or three books, five or ten people, a boy age twelve or fifteen years, 300 or 350
dollars. This construction allows us to communicate not just an approximate
quantity, but also the degree of accuracy that should be granted to it. Thus the
same central tendency can be expressed with increasing uncertainty by saying 10
or 11, 10 or 12, 10 or 15, or 10 or 20.

A linguistic analysis by Thijs Pollmann and Carel Jansen shows that two-num-
ber constructions follow certain implicit rules. Not all intervals are equally
acceptable. At least one of the numbers must be round: One can say "twenty or
twenty-five dollars" but not "twenty-one or twenty-six dollars." The other num-
ber must be of a similar order of magnitude: "Ten or one thousand dollars"
sounds very strange indeed. Another Lewis Carroll quote illustrates this point:

"How far have you come, dear?" the young lady persisted.
Sylvie looked puzzled. "A mile or two, I think," she said doubtfully.
'A mile or three," said Bruno.
"You should not say 'a mile or three,'" Sylvie corrected him.
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The young lady nodded approval. "Sylvie's quite right. It isn't usual to say 'a
mile or three/"

"It would be usual—if we said it often enough," said Bruno.

Bruno is wrong— "a mile or three" would never sound right, because it vio-
lates the basic rules of the two-number construction. These rules are understand-
able if one considers which representations we intend to communicate. These
representations are fuzzy intervals on a mental number line. When we say "twen-
ty, twenty-five dollars," we actually mean "a certain fuzzy state of my mental
accumulator, somewhere around 20 and with a variance of about 5." Neither the
interval from 21 to 26, nor that from 10 to 1,000, or from 1 to 3 are plausible
states of the accumulator because the former is too accurate while the latter two
are too imprecise.

Why Are Some Numerals More Frequent Than Others'?

Would you like to try a bet? Open a book at random and note the first digit that
you encounter. If this digit is either 4, 5, 6, 7, 8, or 9, you win ten dollars. If it is 1,
2, or 3, I win this amount. Most people are ready to take this bet, because they
believe that the odds are 6:3 for them to win. And yet the bet is a loser. Believe it
or not, the digits 1, 2, and 3 are about twice as likely to appear in print than all
other digits combined!

This is a strongly counterintuitive finding because the nine digits seem equiv-
alent and interchangeable. But we forget that numbers that appear in print are
not drawn from a random number generator. Each of them represents an
attempt to transmit a piece of numerical information from one human brain to
another. Hence, how frequently each numeral is used is determined in part by
how easily our brain can represent the corresponding quantity. The decreasing
precision with which numbers are mentally represented influences not just the
perception, but also the production of numerals.

Jacques Mehler and I have systematically looked for number words in tables of
word frequency. Such tables tally up how often a certain word, say "five," appears
in written or spoken texts. Frequency tables are available in a great variety of
languages, from French to Japanese, English, Dutch, Catalan, Spanish, and even
Kannada, a Dravidian language spoken in Sri Lanka and southern India. In all of
these languages, despite enormous cultural, linguistic, and geographic diversity,
we have observed the same results: The frequency of numerals decreases system-
atically with number size.



The Language of Numbers 1 1 1

Figure 4.4. In all languages, the frequency with which number words are printed or uttered

decreases with magnitude, aside from local increases for the round numbers 10,12,15, 20, 50, and

100. For instance, we read or hear the word two about ten times more often than the word nine.

(After Dehaene and Mehler 1992.)

In French, for instance, the word "un" appears once every seventy words or
so, the word "deux" once every six hundred words, the word "trois" once every
one thousand, seven hundred words, and so on. Frequency decreases from 1 to 9,
but also from 11 to 19, and for tens numbers from 10 to 90. A similar decrease is
observed for written or spoken numerals, for Arabic numerals, and even for ordi-
nals from "first" to "ninth." It is accompanied by a few deviations that are also
universal: the very low frequency of the word "zero," and the elevated peaks for
10, 12, 15, 20, 50, and 100 (Figure 4.4). Remarkably, such cross-linguistic regulari-
ties persist in the face of pronounced differences in the way numbers are
expressed, such as the absence of teen words in Japanese, the inversion of tens
and units in Dutch, or the cryptic base 20 of the French words 70, 80, and 90.

I contend that once again, these linguistic regularities reflect the way our
brain represents numerical quantities. Yet before jumping to this conclusion, sev-
eral alternative explanations have to be examined. Ambiguity may be a possible
source of this finding. In many languages the word for "one" is indistinguishable
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from the indefinite article "a." This probably contributes to the elevated frequen-
cy of the word "un" in French—but obviously not in English, where "one" can
only be a number word. Ambiguity is also not a problem beyond "two," and yet
frequency decreases sharply beyond this point.

Another contributing factor is our propensity for counting, which implies that
many objects in our environment are numbered starting at 1. In any city, more
houses bear number 1 than number 100, merely because all streets have a num-
ber 1, but some don't reach number 100. Again this effect certainly contributes to
the elevated frequency of small numerals, but quick calculation shows that by
itself it cannot account for the exponential drop of number frequency, even in the
interval from 1 to 9.

Purely mathematical explanations of the effect should also be given some
consideration. Few people know the following very counterintuitive mathemati-
cal law: If you draw several random numbers from essentially any smooth distri-
bution, the numbers will start more often with 1 than with 9. This singular
phenomenon is called Benford's law. Frank Benford, an American physicist,
made a curious observation: At his university's library, the first pages of the
tables of logarithms were more worn out than the last. Now surely people did
not read tables of logarithms like a bad novel, stopping halfway through. Why
did his colleagues have to consult the beginning of the table more often than the
end? Could it be that small numbers were used more often than large ones? To
his own bewilderment, Benford discovered that numbers of all origins—the
surface of American lakes, his colleagues' street addresses, the square root of
integers, and so on—were about six times more likely to start with digit 1 than
with digit 9. About 31% of numbers started with 1, 19% with 2, 12% with 3,
and the percentages decreases with each successive number. The probability
that a number started with digit n was very accurately predicted by the formula
P(n) = log | 0(n+l) - log,0(n).

The exact origin of this law is still poorly understood, but one thing is certain:
This is a purely formal law, due solely to the grammatical structure of our numer-
ical notations. It has nothing to do with psychology: A computer reproduces it
when it prints random numbers in Arabic notation or even spells them out. The
only constraint seems to be that the numbers be drawn from a sufficiently
smooth distribution spread over several orders of magnitude—for instance, from
1 to 10,000.

Benford's law certainly contributes to amplifying the frequency of small num-
bers in natural language. Yet its explanatory power is limited. The law applies
only to the frequency of the leftmost digit in a multidigit numeral, and so it does
not have any influence on how frequently we refer to the quantities 1 through 9.
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But the measurements that Jacques Mehler and I have performed show, quite
straightforwardly, that the human brain finds it more important to talk about
quantity 1 than about quantity 9. Contrary to Benford's law, this fact has nothing
to do with the production of large multidigit numerals.

If it is not the grammar of numerical notations that drives us to produce small
numbers, could it be Mother Nature herself? Aren't small collections of objects
exceptionally frequent in our environment? To take just one example, discussing
the number of one's children nowadays usually only requires number words
below 3 or 4! Yet as a general explanation of the decreasing frequency of numer-
als, this account is misguided. Philosophers Gottlob Frege and WVO. Quine have
long demonstrated that, objectively speaking, small numerosities are no more
frequent than larger ones in our environment. In any situation, a potential infini-
ty of things might be enumerated. Why do we prefer to speak of one deck of
cards rather than fifty-two cards? The notion that the world is mostly made up of
small sets is an illusion imposed on us by our perceptual and cognitive systems.
Nature isn't made that way, no matter what our brain may think.

To prove this point without resorting to philosophical arguments, consider
the distribution of words with a numerical prefix, such as "bicycle" or "triangle."
Just as the word "two" is more frequent than "three," there are more words that
begin with the prefix bi (or di or duo) that with tri. Crucially, this remains true
even in domains where there is arguably little or no environmental bias for small
numbers. Consider time. My English dictionary lists fourteen temporal words
with the prefix bi or di (from "biannual" to "diestrual"), five words with the prefix
tri (from "triennial" to "triweekly"), five words with a prefix expressing fourness,
and only two expressing fiveness (the uncommon words "quinquennial" and
"quinquennium"). Hence, increasingly fewer words express increasingly large
numbers. Could this be due to an environmental bias? In the natural world,
events do not recur particularly often with a two-month period. No, the culprit is
our brain, which pays more attention to events when they concern small or
round numbers.

If a lexical bias for small numbers can emerge in the absence of any environ-
mental bias, conversely there are situations in which an objective bias fails to be
incorporated in the lexicon. Many more vehicles have four wheels than two, yet
we have a number-prefixed word for the latter (bicycle) but not for the former
(quadricycle?). Numerical regularities in the world seem to be lexicalized only if
they concern a small enough numerosity. For instance, we have number prefixed
words for plants with three leaves (trifoliate, trifolium; trefle in French), but not
for the many other plants or flowers with a fixed but large number of leaves or
petals. Words like "octopus" that explicitly refer to a precise large numerosity are
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rare. As a final example, Scolopendra morsitam, an arthropod with twenty-one
body segments and forty-two legs, is commonly called a centipede (one hundred
feet) in English and a "mille-pattes" (thousand-legs) in French! Clearly, we pay
attention to the numerical regularities of nature only inasmuch as they fit in with
our cognitive apparatus, which is biased toward small or round numerosities.

Human language is deeply influenced by a nonverbal representation of num-
bers that we share with animals and infants. I believe that this alone explains the
universal decrease of word frequency with number size. We express small num-
bers much more often than large ones because our mental number line repre-
sents numbers with decreasing accuracy. The larger a quantity is, the fuzzier our
mental representation of it, and the less often we feel the need to express that pre-
cise quantity.

Round numbers are exceptions because they can refer to an entire range of
magnitudes. This is why the frequency of the words "ten," "twelve," "fifteen,"
"twenty," and "hundred" is elevated compared to their neighbors. All in all, both
the global decrease and the local peaks in number frequency can be explained by
a labeling of the internal number line (Figure 4.5). As children acquire language,
they learn to put a name on each range of magnitudes. They discover that the
word "two" applies to a percept that they know from birth; that "nine" pertains
only to the precise quantity 9, which is difficult to represent exactly; and that peo-
ple often use the word "ten" to mean any quantity somewhere between 5 and 15.
In turn, they therefore utter the words "two" and "ten" more often than "nine,"
hence perpetuating the lawful distribution of number frequencies.

Figure 4.5. The decreasing frequency of numerals is due to the organization of our mental repre-

sentation of quantities. The larger a number, the less accurate our mental representation of it;

hence, the less often we need to use the corresponding word. As for round numbers like 10, 12, IS or

20, they are uttered more frequently than others because they can refer to a greater range of quanti-

ties. (After Dehaene and Mehler 1992.)
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One last detail: Our study showed that, in all Western languages, the frequen-

cy of number 13 was lower than that of 12 or 14. This seems the result of the

"Devil's dozen" superstition, which assigns a maleficent power to number 13

and is known to such a degree that many American skyscrapers have no 13th
floor. In India, where this superstition is unknown, the frequency of the num-

ber 13 does not show any notable drop. The frequency of numerals appears to
faithfully reflect their importance in our mental lives, even in their most trivial

details.

Cerebral Constraints on Cultural Evolution

What does the analysis of numerical languages reveal about the relationship
between mathematics and the brain? It shows that numeration systems have

evolved both through the brain and for the brain. Through the brain, because the
history of number notations is clearly limited by the inventiveness of the human
brain and its ability to fathom new principles of numeration. For the brain,

because numerical inventions have been transmitted from generation to genera-
tion only when they closely matched the limits of human perception and memo-

ry, and therefore increased humankind's computational potential.
The history of numerals is obviously not driven merely by random factors. It

exhibits discernible regularities that transcend the fortunes of history. Across
borders and oceans, men and women of all colors, cultures, and religions have

regularly reinvented the same notation devices. The place-value principle was
rediscovered, with an interval of about three thousand years, in the Middle East,
on the American continent, in China, and in India. In all languages, frequency
decreases with number size. In all languages too, round numbers are contrasted

with sharp numbers. The explanation of these striking cross-cultural parallels
does not reside in dubious exchanges between remote civilizations. Rather, they
discovered similar solutions because they were confronted with the same prob-

lems and have been endowed with the same brain for solving them.
Let me sketch a summary of humankind's slow march toward greater numer-

ical efficacy—a summary that must remain highly schematic, given that history
is rarely linear and that some cultures may have skipped several steps.

1. Evolution of oral numeration

STARTING POINT: The mental representation of numerical quantities that we
share with animals
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PROBLEM: How to communicate these quantities through spoken language?
SOLUTION: Let the words "one," "two," and "three" refer directly to the subitized

numerosities 1,2, and 3.

PROBLEM: How to refer to numbers beyond 3?
SOLUTION: Impose a one-to-one correspondence with body parts (12 = pointing

to the left breast).

PROBLEM: How to count when the hands are busy?
SOLUTION: Turn the names of body parts into number names (12 = "left breast").

PROBLEM: There is only a limited set of body parts, compared with an infinity of
numbers.

SOLUTION: Invent number syntax (12 = "two hands and two fingers").

PROBLEM: How to refer to approximate quantities?
SOLUTION: Select a set of "round numbers" and invent the two-word construc-

tion (e.g., ten or twelve people).

2. Evolution of written numeration

PROBLEM: How to keep a permanent trace of numerosities?
SOLUTION: One-to-one correspondence. Engrave notches on bone, wood, and so

on (7 = I l l l l l l ) .

PROBLEM: This representation is hard to read.
SOLUTION: Regroup the notches (7 = ). Replace some of these groups with a

single symbol (7 = VII).

PROBLEM: Large numbers still require many symbols (e.g., 37 = XXXVII).
IMPASSE r: Add even more symbols (e.g., L instead of ).
IMPASSE 2: Use distinct symbols to denote units, tens, and hundreds (345 = TME).
SOLUTION: Denote numbers using a combination of multiplication and addition

(345 = 3 hundreds, 4 tens, and 5).
PROBLEM: This notation still suffers from the repetition of the words "hundreds"

and "tens."
SOLUTION: Drop these words, resulting in a shorter notation ancestral to modern

place-value notation (437 = 437) .
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PROBLEM: This notation is ambiguous when units of a certain rank are lacking
(407, denoted as 4 7, is easily confused with 47).

SOLUTION: Invent a placeholder, the symbol zero.

The cultural evolution of numeration systems testifies to the inventiveness of
humanity. Across centuries, ingenious notation devices have been invented and
constantly refined, the better to fit the human mind and improve the usability of
numbers. The history of number notations is hard to reconcile with the Platonist
conception of numbers as ideal concepts that transcend humankind and give us
access to mathematical truths independent of the human mind. Contrary to what
the Platonist mathematician Alain Connes has written, mathematical objects are
not "untainted by cultural associations"—or at the very least this is not true of
numbers, one of the most central of all mathematical objects. What has driven
the evolution of numeration systems is obviously not an "abstract concept" of
number, nor an ethereal conception of mathematics. If this were the case, as gen-
erations of mathematicians have noted, binary notation would have been a much
more rational choice than our good old base 10. At least a prime number such as
7 or 11, or perhaps a number with many divisors such as 12, should have been
selected as the base of numeration. But more prosaic criteria governed our ances-
tors' choices. The preponderance of base 10 is due to the contingent fact that we
have ten fingers; the bounds of our subitization procedure account for the struc-
ture of Roman numerals; and the sharp limits of our short-term memory explain
the constant drive toward a compact notation for large numbers. Let us leave the
last word to the philosopher Karl Popper: "The natural numbers are the work of
men, the product of human language and of human thought."



Small Heads for
Big Calculations

Two and two make four

four and four make eight

eight and eight make sixteen

Repeat!, says the teacher

Jacques Prevert, Page d'ecriture

Ambition, distraction, uglification, and derision. These are the mischie-
vous names the Reverend Charles Lutwidge Dodgson, a mathematics
professor better known to us as Lewis Carroll, gave to the four arithmeti-

cal operations. Obviously, Carroll did not cherish too many illusions about his
pupils' calculation abilities. And perhaps he was right. While children easily
acquire number syntax, learning to calculate can be an ordeal. Children and even
adults often err in the most elementary of calculations. Who can say that they
never get 7x9 or 8x7 wrong? How many of us can mentally compute 113-37 or
100-24 in less than two seconds? Calculation errors are so widespread that far
from stigmatizing ignorance, they attract sympathy when they are admitted pub-
licly ("I've always been hopeless at math!"). Many of us can almost identify with
Alice's plight as she attempts to calculate while traveling through Wonderland:
"Let me see: four times five is twelve, and four times six is thirteen, and four
times seven is—oh dear! I shall never get to twenty at that rate!"

Why is mental calculation so difficult? In this chapter, we examine the calcula-
tion algorithms of the human brain. Although our knowledge of this issue is still
far from complete, one thing is certain: Mental arithmetic poses serious problems

1 1 8

Chapter 5
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for the human brain. Nothing ever prepared it for the task of memorizing dozens
of intermingled multiplication facts, or of flawlessly executing the ten or fifteen
steps of a two-digit subtraction. An innate sense of approximate numerical quan-
tities may well be embedded in our genes; but when faced with exact symbolic
calculation, we lack proper resources. Our brain has to tinker with alternate cir-
cuits in order to make up for the lack of a cerebral organ specifically designed for
calculation. This tinkering takes a heavy toll. Loss of speed, increased concentra-
tion, and frequent errors illuminate the shakiness of the mechanisms that our
brain contrives in order to "incorporate" arithmetic.

Counting: The ABC of Calculation

In the first six or seven years of life, a profusion of calculation algorithms see the
light. Young children reinvent arithmetic. Spontaneously or by imitating their
peers, they imagine new strategies for calculation. They also learn to select the
best strategy for each problem. The majority of their strategies are based on
counting, with or without words, with or without fingers. Children often discov-
er them by themselves, even before they are taught to calculate.

Does this imply that counting is an innate competence of the human brain?
Rochel Gelman and Randy Gallistel, from the psychology department of UCLA,
have championed this point of view. According to them, children are endowed
with unlearned principles of counting. They do not have to be taught that each
object must be counted once and only once, that the number words must be
recited in fixed order, or that the last number represents the cardinal of the whole
set. Gelman and Gallistel maintain that such counting knowledge is innate and
even precedes and guides the acquisition of the number lexicon.

Few theories have been as harshly debated as that of German and Gallistel's.
For many psychologists and educators, counting is a typical example of learning
by imitation. Initially, it is just a rote behavior devoid of meaning. According to
Karen Fuson, children initially recite "onetwothreefourfive . . . " as an uninter-
rupted chain. Only later do they learn to segment this sequence into words, to
extend it to larger numerals, and to apply it to concrete situations. They progres-
sively infer what counting is about by observing other people count. Initially,
according to Fuson, counting is just parroting.

The truth, which is being progressively unveiled after years of controversy
and tens of experiments, seems to stand somewhere between the "all innate" and
the "all acquired" extremes. Some aspects of counting are mastered quite preco-
ciously, while others seem to be acquired by learning and imitation.
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As an example of an amazingly precocious competence for counting, consider

the following experiment by Karen Wynn. At two and a half, children have proba-

bly not had many occasions to see someone count sounds or actions. Yet if one

asks them to watch a Sesame Street videotape and count how many times Big Bird

jumps, they easily lend themselves to this task. Likewise, they can count sounds

as diverse as trumpeting, a bell, a splash, and a computer beep that have been

recorded on tape and whose source is not visible. So children seem to under-

stand, quite early on and without explicit teaching, that counting is an abstract

procedure that applies to all kinds of visual and auditory objects.

Here is another precocious competence: As early as three and half years of

age, children know that the order in which one recites numerals is crucial, while

the order in which one points toward objects is irrelevant as long as each object is

counted once and only once. In an innovative series of experiments, Gelman and

her colleagues presented children with situations that violate the usual conven-

tions of counting. The results indicate that three-and-a-half-year-olds can identify

and correct rather subtle counting errors. They never fail to notice when some-

one recites numerals out of order, forgets to count an item, or counts the same

item twice. Most important, they maintain a clear distinction between such

patent errors and other correct though unusual ways of counting. For instance,

they find it perfectly acceptable to start counting at the middle of a row of

objects, or to count every other object first, as long as one eventually counts all

items once and only once. Better yet, they are willing to start counting at any

point in a row, and they can even devise strategies to systematically reach a pre-

designated object in third position.

What these experiments show is that by their fourth year, children have mas-

tered the basics of how to count. They are not content with slavishly imitating
the behavior of others: They generalize counting to novel situations. The origins

of this precocious competence remain poorly understood. From where does a

child draw the idea of reciting words in a perfect one-to-one correspondence with

the objects to be counted? Like Gelman and Gallistel, I believe that this aptitude

belongs to the genetic endowment of the human species. Reciting words in a
fixed order is probably a natural outcome of the human faculty for language. As

to the principle of one-to-one correspondence, it is actually widespread in the
animal kingdom. When a rat forages through a maze, it tries to visit each arm

once and only once, a rational behavior that minimizes exploration time. When
we look for a given object in a visual scene, our attention is oriented in turn
toward each object. The counting algorithm stands at the intersection of these
two elementary abilities of the human brain—word recitation and exhaustive
search. That is why our children easily dominate it.
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Though children rapidly grasp the how to of counting, however, they seem to
initially ignore the why. As adults, we know what counting is for. To us, counting
is a tool that serves a precise goal: enumerating a set of items. We also know that
what really matters is the final numeral, which represents the cardinal of the
entire set. Do young children have this knowledge? Or do they just view counting
as an entertaining game in which one recites funny words while pointing to vari-
ous objects in turn?

According to Karen Wynn, children do not appreciate the meaning of count-
ing until the end of their fourth year. Let your three-year-old daughter count up
her toys and then ask her, "How many toys do you have?" Chances are, she will
give a random number, not necessarily the one she just reached. Like all children
of this age, she does not seem to relate the "how many" question to her previous
counting. She may even count everything up again, as if the act of counting itself
was an adequate answer to a "how many" question. Likewise, ask a two-and-a-
half-year-old boy to give you three toys. Most likely he will pick a handful at ran-
dom, even if he can already count up to five or ten. At that age, although the
mechanisms of counting have largely fallen into place, children do not seem to
understand what counting is for, and they do not think of counting when the sit-
uation commands it.

Around four, the meaning of counting eventually settles in. But how? The
preverbal representation of numerical quantities probably plays a crucial role in
this process. Remember that right from birth, way before they start to count, chil-
dren have an internal accumulator that informs them of the approximate number
of things that surround them. This accumulator can help bring meaning to
counting. Suppose that a child is playing with two dolls. His accumulator auto-
matically activates a cerebral representation of the quantity 2. Thanks to the
processes described in an earlier chapter, the child has learned that the word
"two" applies to this quantity, so that he can say "two dolls" without having to
count. Now suppose that for no particular reason, he decides to "play the count-
ing game" with the dolls, and recites the words "one, two." He will be surprised
to discover that the last number of the count, "two," is the very word that can
apply to the entire set. After ten or twenty such occasions, he may soundly infer
that whenever one counts, the last word arrived at has a special status: It repre-
sents a numerical quantity that matches the one provided by the internal accu-
mulator. Counting, which was only an entertaining word game, suddenly
acquires a special meaning: Counting is the best way of saying how manyl
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Preschoolers as Algorithm Designers

Understanding what counting is for is the starting point of an outburst of numer-

ical inventions. Counting is the Swiss Army knife of arithmetic, the tool that chil-

dren spontaneously put to all sorts of uses. With the help of counting, most

children find ways of adding and subtracting numbers without requiring any

explicit teaching.

The first calculation algorithm that all children figure out for themselves con-

sists in adding two sets by counting them both on the fingers. Ask a very young

child to add 2 and 4. She will typically start by counting up to the first number, 2,

while successively raising two fingers. Then she will count up to the second num-

ber, 4, while raising four other fingers. And finally she will recount them all and

reach a total of 6. This first "digital" algorithm is conceptually simple but very

slow. Executing it can be truly awkward: At the age of four, to compute 3+4, my

son would put up three fingers on the left hand and four on the right hand. Then

he would proceed to count them using the only pointing device that remained at

his disposal—the tip of his nose!

Initially, young children find it difficult to calculate without using their fin-

gers. Words vanish as soon as they have been uttered, but fingers can be kept con-

stantly in sight, preventing one from losing count in case of a temporary

distraction. After a few months though, children discover a more efficient addi-

tion algorithm than finger counting. When adding two and four, they can be

heard muttering "one two ... three ... four ... five ... six." They first count up to

the first operand, 2, then move forward by as many steps as specified by the sec-

ond operand, 4. This is an attention-demanding strategy because it implies some

sort of recursion: In the second phase, one has to count how many times one

counts! Children often make this recursion explicit: "one two ... three is one ...

four is two ... five is three .,. six is four ... six." The difficulty of this step is

reflected by a drastic slowing and extreme concentration.

Refinements are quickly found. Most children realize that they need not
recount both numbers, and that they can compute 2+4 by starting right from the
word "two." They then simply say "two ... three ... four ... five ... six." To
shorten calculation even further, they learn to systematically start with the larger

of the two numbers. When asked to compute 2+4, they spontaneously transform

this problem into the equivalent 4+2. As a result, all they now have to do is count
a number of times equal to the smaller of the two addends. This is called the
"minimum strategy." It is a standard algorithm that underlies most of children's
calculations before the onset of formal schooling.



Small Heads for Big Calculations 123

It is rather remarkable that children spontaneously think of counting from the
larger of the two numbers to be added. This indicates that they have a very pre-
cocious understanding of the commutativity of addition (the rule that a+b is
always equal to b+a). Experiments show that this principle is already in place by
five years of age. Never mind the legions of educators and theorists who have
claimed that children couldn't possibly understand arithmetic unless they first
received years of solid education in logic. The truth is just the opposite: As chil-
dren count on their fingers, years before going to school, they develop an intu-
itive understanding of commutativity, whose logical foundations they will come
to appreciate only much later (if ever).

Children select their calculation algorithms with an extraordinary flair. They
quickly master many addition and subtraction strategies. Yet far from being lost
in this abundance of possibilities, they learn to carefully select the strategy that
seems most suited for each particular problem. For 4+2, they may decide to count
on from the first operand. For 2+4, they will not forget to reverse the two op-
erands. Confronted with the more difficult 8+4, they might remember that 8+2 is
10. If they manage to decompose 4 into 2+2, then they'll be able to simply count
"ten, eleven, twelve."

Calculation abilities do not emerge in an immutable order. Each child behaves
like a cook's apprentice who tries a random recipe, evaluates the quality of the
result, and decides whether or not to proceed in this direction. Children's internal
evaluation of their algorithms takes into account both the time it takes them to
complete the computation and the likelihood that they have reached the correct
result. According to child psychologist Robert Siegler, children compile detailed
statistics on their success rate with each algorithm. Little by little, they acquire a
refined database of the strategies that are most appropriate for each numerical
problem. There is no doubt that mathematical education plays an extremely
important role in this process, both by inculcating new algorithms into children
and by providing them with explicit rules for selecting the best strategy. Yet the
best part of this process of invention followed by selection is established in most
children before they even reach their preschool years.

Would you like a final example of children's shrewdness in designing their
own calculation algorithms? Consider the case of subtraction. Ask a young boy to
compute 8-2, and you may hear him muttering: "eight ... seven is one ... six is
two ... six": He counts backward starting from the larger number 8. Now ask
him to solve 8-6. Does the child have to count backward "eight seven six five four
three two"? No. Chances are, he will find a more expeditious solution: "six ...
seven is one .. . eight is two . . . two!" He counts the number of steps it takes to go
from the smaller number to the larger. By cunningly planning his course of
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action, the child realizes a remarkable economy. It takes him the same number of

steps—only two—to compute 8-2 and 8-6. But how does he select the appropri-

ate strategy? The optimal choice is dictated by the size of the number to be sub-

tracted. If it is greater than half the starting number, as in 8-5, 8-6, or 8-7, the

second strategy is the winner; otherwise, as in 8-1, 8-2, or 8-3, backward count-

ing is faster. Not only is the child a sufficiently clever mathematician to sponta-

neously discover this rule, but he manages to use his natural sense of numerical

quantities to apply it. The selection of an exact calculation strategy is guided

by an initial quick guess. Between the age of four and seven, children exhibit an

intuitive understanding of what calculations mean and how they should best be

selected.

Memory Appears on the Scene

Take a stopwatch and measure how long a seven-year-old child takes to add

two numbers. You will discover that the calculation time increases in direct pro-

portion to the smaller addend, a sure sign that the child is using the minimum

algorithm. Even if the child betrays no evidence of counting either verbally or

on his fingers, response times indicate that he is reciting the numbers in his

head. Computing 5+1, 5+2, 5+3, or 5+4 takes him an additional four-tenths of a

second for each additional unit: At that age, each counting step takes about 400

milliseconds.

What happens in older subjects? When they first conducted this experiment

in 1972, Carnegie-Mellon University psychologist Guy Groen and his student

John Parkman were puzzled to discover that even in college students, the dura-

tion of an addition is predicted by the size of the smaller addend. The only differ-

ence is that the size of the time increment is much smaller: 20 milliseconds per

unit. How should this finding be interpreted? Surely even talented students can-

not count at the incredible speed of 20 milliseconds per digit, or 50 digits per sec-
ond. Groen and Parkman thus proposed a hybrid model. On 95% of trials, the
students would directly retrieve the result from memory. On the remaining 5% of

trials, their memory would collapse, and they would have to count at the speed of
400 milliseconds per digit. On average, therefore, addition times would increase
by only 20 milliseconds for each unit.

Despite its ingenuity, this proposal was quickly challenged by new findings. It
was soon realized that students' response time did not increase linearly with the

size of the addends (Figure 5.1). Large addition problems such as 8+9 took a dis-

proportionately long time. The time to add two digits was actually best predicted
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Figure S.I. The problem-size effect: The time for an. adult to solve an addition problem increases

sharply with the size of the addends. (Reprinted from Ashcraft 1995 by permission of the author

and publisher; copyright © 1995 by Erlbaum (UK), Taylor &• Francis, Hove, UK.)

by their product or by the square of their sum—two variables that were hard to
reconcile with the hypothesis that the subjects were counting. The final blow
against the counting theory came when it was discovered that the time to multiply
two digits was essentially identical to the time taken to add them. In fact, addition
and multiplication times were predicted by the very same variables. If subjects
counted, even on only 5% of trials, multiplication should have been much slower
than addition.

There was only one way out of this conundrum. In 1978, Mark Ashcraft and
his colleagues at Cleveland State University proposed that young adults hardly
ever solve addition and multiplication problems by counting. Instead, they gener-
ally retrieve the result from a memorized table. Accessing this table, however,
takes an increasingly longer time as the operands get larger. It takes less than a sec-
ond to retrieve the result of 2+3 or 2x3, but about 1.3 seconds to solve 8+7 or 8x7.

This effect of number size on memory retrieval probably has multiple origins.
As explained in previous chapters, the accuracy of our mental representation
drops quickly with number size. Order of acquisition may also be a factor,
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because simple arithmetic facts, which involve small operands, are often learned

before more difficult ones with large operands. A third factor is the amount of

drilling. Because the frequency of numerals decreases with size, we receive less

training with larger multiplication problems. Mark Ashcraft and his colleagues

have tallied up how often each addition or multiplication problem appears in chil-

dren's textbooks. The outcome is surprisingly inane: Children are drilled far more

extensively with multiplications by 2 and by 3 than by 7, 8, or 9, although the lat-

ter are more difficult.

The hypothesis that memory plays a central role in adult mental arithmetic is

now universally accepted. This does not imply that adults do not also have many

other calculation strategies at their disposal. Indeed, most adults confess to using

indirect methods such as computing 9x7 as (10x7)-7, a factor that also contributes

to slowing down the resolution of large addition and multiplication problems. It

does mean, however, that a major upheaval in the mental arithmetic system

occurs during preschool years. Children suddenly shift from an intuitive under-

standing of numerical quantities, supported by simple counting strategies, to a

rote learning of arithmetic. It is hardly surprising if this major turn coincides

with the first serious difficulties that children encounter in mathematics. All of a

sudden, progressing in mathematics means storing a wealth of numerical knowl-

edge in memory. Most children get through as best as they can. But as we will

see, they often lose their intuitions about arithmetic in the process.

The Multiplication Table: An Unnatural Practice?

Few lessons are drilled as extensively as the addition and multiplication tables. We

have all spent a portion of our childhood learning them, and as adults we con-

stantly appeal to them. Any student executes tens of elementary calculations

daily. Over a lifetime, we must solve more than ten thousand multiplication prob-
lems. And yet our arithmetic memory is at best mediocre. It takes a well-trained
young adult considerable time, often more than 1 second, to solve a multiplica-

tion such as 3x7. Error rates average 10 to 15 percent. On the most difficult prob-
lems such as 8x7 or 7x9, failure occurs at least once in every four attempts, often

following more than 2 seconds of intense reflection.

Why is this? Multiplications by 0 or 1 obviously do not have to be learned by
rote. Furthermore once 6x9 or 3+5 are stored, the responses to 9x6 and 3+5 easily
follow by commutativity. This leaves us with only forty-five addition and thirty-
six multiplication facts to be remembered. Why is it so difficult for us to store
them? After all, hundreds of other arbitrary facts crowd our memory. The names
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of our friends, their ages, their addresses, and the many events of our lives occu-
py entire sections of our memory. At the very age when children labor over arith-
metic, they effortlessly acquire a dozen new words daily. Before adulthood, they
will have learned at least twenty thousand words and their pronunciation,
spelling, and meaning. What makes the multiplication table so much harder to
retain, even after years of training?

The answer lies in the particular structure of addition and multiplication
tables. Arithmetic facts are not arbitrary and independent of each other. On the
contrary, they are closely intertwined and teeming with false regularities, mis-
leading rhymes, and confusing puns. What would happen if you had to memo-
rize an address book that looked like this:

• Charlie David lives on George Avenue.
» Charlie George lives on Albert Zoe Avenue.
» George Ernie lives on Albert Bruno avenue.

And a second one for professional addresses like this:

» Charlie David works on Albert Bruno Avenue.
ii Charlie George works on Bruno Albert Avenue.
» George Ernie works on Charlie Ernie Avenue.

Learning these twisted lists would certainly be a nightmare. Yet they are noth-
ing but addition and multiplication tables in disguise. They were composed by
replacing each of the digits 0, 1, 2, 3, 4 ... by a surname (Zoe, Albert, Bruno,
Charlie, David . . . ) . Home address was substituted for addition, and professional
address for multiplication. The six above addresses are thus equivalent to the
additions 3+4=7, 3+7=10, and 7+5=12, and to the multiplications 3x4=12, 3x7=21,
and 7x5=35. Seen from this unusual angle, arithmetic tables regain for our adult
eyes the intrinsic difficulties that they pose for children who first discover them.
No wonder we have trouble remembering them: The most amazing thing may
well be that we do eventually manage to memorize most of them!

We haven't quite answered our question, though: Why is this type of list so
difficult to learn? Any electronic agenda with a minuscule memory of less than a
kilobyte has no trouble storing them all. In fact, this computer metaphor almost
begs the answer. If our brain fails to retain arithmetic facts, that is because the
organization of human memory, unlike that of a computer, is associative'. It
weaves multiple links among disparate data. Associative links permit the recon-
struction of memories on the basis of fragmented information. We invoke this
reconstruction process, consciously or not, whenever we try to retrieve a past



128 Beyond Approximation

fact. Step by step, the perfume of Proust's madeleine evokes a universe of memo-
ries rich in sounds, visions, words, and past feelings.

Associative memory is a strength as well as a weakness. It is a strength when it

enables us, starting from a vague reminiscence, to unwind a whole ball of memo-

ries that once seemed lost. No computer program to date reproduces anything

close to this "addressing by content." It is a strength again when it permits us to

take advantage of analogies and allows us to apply knowledge acquired under

other circumstances to a novel situation. Associative memory is a weakness, how-

ever, in domains such as the multiplication table where the various pieces of

knowledge must be kept from interfering with each other at all costs. When faced

with a tiger, we must quickly activate our related memories of lions. But when

trying to retrieve the result of 7x6, we court disaster by activating our knowledge

of 7+6 or of 7x5. Unfortunately for mathematicians, our brain evolved for mil-

lions of years in an environment where the advantages of associative memory

largely compensated for its drawbacks in domains like arithmetic. We are now

condemned to live with inappropriate arithmetical associations that our memory

recalls automatically, with little regard for our efforts to suppress them.

Proof of the pernicious influence of interference in associative memory is

easy to come by. Throughout the world, scores of students have contributed hun-

dreds of thousands of response times and tens of thousands of errors to the sci-

entific study of calculation processes. Thanks to them, we now know precisely

which calculation errors are the most frequent. Multiply 7 by 8. It is probable that

instead of 56, you will answer 63, 48, or 54. Nobody ever replies 55, although this

number is only one unit off the correct result. Practically all errors belong to the

multiplication table, most often to the same line or column as the original multi-

plication problem. Why? Because the mere presentation of 7x8 is enough for us

to not only recall the correct result 56, but also its tightly associated neighbors

7x9, 6x8, or 6x9. All of these facts compete in gaining access to speech production

processes. All too often we try to retrieve 7x8 and the result of 6x8 pops up.

The automatization of arithmetic memory starts at a young age. As early as

seven, whenever we see two digits, our brain automatically cranks up their sum.
To prove this, psychologist Jo Anne Lefevre and her colleagues at the University of

Alberta in Canada concocted a clever experiment. They explained to subjects that
they were going to see a pair of digits such as 2 and 4 that they had to memorize

for a second. They would then see a third digit and were to decide whether it was
identical to one of the first two numbers. The results revealed an unconscious
addition process. When the target digit was equal to the sum of the pair (6),

although the subjects generally responded correctly that it was not equal to any
of the initial digits, there was a noticeable slowing of responses, which was not
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seen for neutral targets such as 5 or 7. In a recent study by Patrick Lemaire and
collaborators, this effect was replicated with children as young as seven.
Apparently, the mere flashing of the digits 2 and 4, even without a plus sign, suf-
fices for our memory to automatically retrieve their sum. Subsequently, because
this number is active in our memory, we are not quite sure whether we have seen
it or not.

Here is another striking demonstration of the automaticity of arithmetic
memory that you can try for yourself. Answer the following questions as fast as
you can:

Now quick! Pick a number between 12 and 5. Got it?

The number you picked is 7, isn't it?
How did I read your mind? The mere presentation of the numbers 12 and 5

seems enough to trigger an unconscious subtraction 12-5=7. This effect is proba-
bly amplified by the initial addition drill, the reversed order of the numbers 12
and 5, and the ambiguous phrase "between 12 and 5" that may incite you to com-
pute the distance between the two numbers. All these factors conspire to
enhance the automatic activation of 12-5 up to a point where its result enters
consciousness. And you believed that you were exercising your "free will" when
selecting a digit!

Our memory also has a hard time keeping addition and multiplication facts in
distinct compartments. Not infrequently do we automatically answer an addition
problem with the corresponding multiplication fact (2+3=6); more rarely, the con-
trary occurs (3x3=6). It also takes us longer to realize that 2x3=5 is false than to
reject 2x3=7 because the former result would be correct under addition.

Kevin Miller, at the University of Texas, has studied how such interference
evolves during the acquisition of new arithmetic facts. In third grade, most pupils
already know many additions by heart. As they start to learn multiplication, the
time they take to solve an addition temporarily increases, while the first memory
slips of the 2+3=6 kind begin to appear. Thus, the integration of multiple arith-
metic facts in long-term memory seems to be a major hurdle for most children.

-2+2?
-4+4?

-8+8?

- 16+16?
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Verbal Memory to the Rescue

If storing arithmetic tables in memory is so difficult, how does our brain eventu-

ally catch up? A classic strategy consists in recording arithmetic facts in verbal

memory. "Three times seven, twenty-one" can be stored word for word alongside

"Twinkle twinkle little star" or "Our Father who art in Heaven." This solution is

not unreasonable because verbal memory is vast and durable. Indeed, who does

not still have a head full of slogans and songs heard years earlier? Educators have

long realized the huge potential of verbal memory. In many countries, recitation

remains the prime method for teaching arithmetic. I still remember the ungra-

cious chorus at elementary school as my fellow budding mathematicians and I

loudly recited multiplication tables in perfect synchrony.

The Japanese seem to have pushed this method even further. Their multiplica-

tion table is made up of little verses called "ku-ku." This word, which literally

means "nine-nine," is directly drawn from the last verse of the table, 9x9=81. In

the Japanese table, times and equal symbols are silent, leaving only the two

operands and the result. Thus 2x3=6 is learned as "ni san na-roku"—literally,

"two three zero six." Several conventions have been consecrated by history. In ku-

ku, numbers are pronounced in their Chinese form, and their pronunciation

varies with context. For instance, eight is normally "hashi," but can be abbrevi-

ated as "hap" or even as "pa," as in "hap-pa roku-ju shi," 8x8=64. The resulting

system is complex and often arbitrary, but its singularities probably ease the load

on memory.

The fact that arithmetic tables are learned verbatim seems to have an intrigu-

ing consequence: Calculation becomes tied to the language in which it is learned

at school. An Italian colleague of mine, after spending more than twenty years in

the United States, is now an accomplished bilingual. He speaks and writes in flu-

ent English, with a rigorous syntax and an extensive vocabulary. Yet when he has

to calculate mentally, he can still be heard mumbling numbers in his native

Italian. Does this mean that after a certain age, the brain loses its plasticity for
learning arithmetic? This is a possibility, but the real explanation may be more
trivial. Learning arithmetic tables is so laborious that it may be more economical

for a bilingual to switch back to the mother tongue for calculation rather than

relearn arithmetic from scratch in a new language.
Non-bilinguals can experience the same phenomenon. We all find it hard to

refrain from naming numbers aloud when we have to perform complex calcula-
tions. The crucial role played by the verbal code in arithmetic becomes fully

apparent when one is asked to calculate while simultaneously reciting the alpha-
bet aloud. Try it, and you will easily convince yourself that this is quite hard,
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because speaking saturates the cerebral language production systems necessary
for mental calculation.

Yet a better proof of the verbatim, coding of the multiplication table comes
from the study of calculation errors. When confronted with 5x6, we often mis-
takenly respond "36" or even "56," as if the 5 and the 6 of the problem contami-
nated our response. Our cerebral circuits tend to automatically read the problem
as a two-digit number: 5x6 irrepressibly evokes the words "fifty-six." Most
strangely, this reading bias interacts in a complex way with the plausibility of the
result. One never observes gross blunders such as 6x2=62 or 3x7=37. Most of the
time, we mistakenly read the operands only when the resulting two-digit number
is a plausible result that belongs to the multiplication table (for instance, 3x6=36
or 2x8=28). This suggests that reading errors do not occur after multiplication
retrieval, but during it—at a time when the reading bias can still influence access
to arithmetic memory without completely overriding it. Hence, reading and
arithmetic memory are highly interconnected procedures that make use of the
same verbal encoding of numbers. For the adult brain, multiplying merely means
reading out 3x6 as "eighteen."

In spite of its importance, verbal memory is not the only source of knowledge
to be exploited during mental calculation. When confronted with the difficult task
of memorizing arithmetic tables, our brain uses every available artifice. When
memory fails, it falls back on other strategies like counting, serial addition, or sub-
traction from some reference (for instance, 8x9=(8xlO)-8=72). Above all, it never
misses any opportunity to take a shortcut. Please verify whether the following cal-
culations are true or false: 5x3=15, 6x5=25, 7x9=20. Do you have to calculate to
reject the third multiplication? Probably not, for at least two good reasons. First,
the proposed result, 20, is grossly false. Experiments have shown that response
time drops as the degree of falsehood increases. Results whose magnitude departs
considerably from the truth are rejected in less time than it would take to actually
complete the operation, suggesting that in parallel to calculating the exact result,
our brain also computes a coarse estimate of its size. Second, in 7x9=20, parity is
violated. Since both operands are odd, the result should be odd. An analysis of
response times shows that our brain implicitly checks the parity rules that govern
addition and multiplication and quickly reacts whenever a violation is found.

Mental Bugs

Let us now briefly tackle the issue of multidigit calculations. Suppose that you
have to compute 24+59. No computer would need more than a few microsec-
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onds, yet it will take you more than two seconds, or at least a hundred thousand

times longer. This problem will mobilize all your power of concentration (as we

will see later on, the prefrontal sectors of the brain, which are involved in the

control of nonautomated activities, are highly active during complex calcula-

tions). You will have to go carefully through a series of steps: Isolate the right-

most digits (4 and 9), add them up (4+9=13), write down the 3, carry the 1, isolate

the leftmost digits (2 and 5), add them up (2+5=7), add the carry over (7+1 =8), and

finally write down the 8. These stages are so reproducible that given the magni-

tude of the digits, one can estimate the duration of each operation and predict,

to within a few tens of a second, at which point you will finally lift your pen.

At no time during such a calculation does the meaning of the unfolding oper-

ations seem to be taken into account. Why did you carry the 1 over to the left-

most column? Perhaps you now realize that this 1 stands for 10 units and that it

must therefore land in the tens column. Yet this thought never crossed your mind

while you were computing. In order to calculate fast, the brain is forced to ignore

the meaning of the computations it performs.

As another example of the divorce between the mechanical aspects of calcula-

tion and their meaning, consider the following subtraction problems, which are

quite typical of a young child:

Do you see the problem? This child is not responding at random. Every single

answer obeys the strictest logic. The classical subtraction algorithm is rigorously

applied, digit after digit, from right to left. The child, however, reaches an

impasse whenever the top digit is smaller than the bottom. This situation calls for

carrying over, but for some reason the child prefers to invert the operation and

subtract the top digit from the bottom one. Little does it matter that this opera-
tion is meaningless. Indeed, the result often exceeds the starting number, without
disturbing the pupil in the least. Calculation appears to him as a pure manipula-

tion of symbols, a surrealist game largely devoid of meaning.
John Brown, Richard Burton, and Kurt Van Lehn, from Carnegie-Mellon

University, studied mental subtraction with such meticulous scrutiny that they
wound up collecting the responses of more than a thousand children to tens of
problems. In this way, they discovered and classified dozens of systematic errors

54

-23

31

(correct)
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similar to the ones we've just examined. Some children have difficulties only with
zeroes, while others fail only with the digit 1. A classical error consists in a left-
ward shift of all carry-overs that apply to the digit 0. In 307-9, some children cor-
rectly compute 17-9 = 8, but then fail to subtract the carryover from 0. Instead,
they wrongly simplify the task by carrying over the 1 into the hundreds column;
"therefore", 307-9 = 208. Errors of this kind are so reproducible that Brown and
his colleagues have described them in computer science terms: Children's sub-
traction algorithms are riddled with "bugs."

Where do these bugs come from? Strange as it might seem, no textbook ever
describes the correct subtraction recipe in its full generality. A computer scientist
can vainly search his kid's arithmetic manual for instructions precise enough to
program a general subtraction routine. All school manuals are content with pro-
viding rudimentary instructions and a panoply of examples. Pupils are supposed
to study the examples, analyze the behavior of their teacher, and derive their own
conclusions. It is hardly surprising, then, that the algorithm they arrive at is not
correct. Textbook examples generally do not cover all possible cases of subtrac-
tion. Hence they leave the door open to all sorts of ambiguities. In due course,
any child is confronted with a novel situation where he or she will have to impro-
vise, and gaps in his or her understanding of subtraction will show up.

Consider this example studied by Kurt Van Lehn: A child subtracts correctly
except that each time he has to subtract two identical digits, he wrongly carries 1
over to the next column (e.g., 54-4 = 40; 428-26 = 302). This child has correctly fig-
ured out that one must carry over whenever the top digit is smaller than the bot-
tom. However, he wrongly generalizes this rule to the case where the two digits
are equal. Most likely, this particular case was never dealt with in his textbook.

Another edifying example: Many arithmetic textbooks illustrate only the sub-
traction procedure with two-digit numerals (17-8, 54-6, 64-38, etc.). Initially
then, pupils only learn to carry over to the tens column, which is always the first
column from the left. Hence the first time they are confronted with a three-digit
subtraction, many children wrongly decide to carry over to the leftmost column
as they have in the past (e.g., 621 -2 = 529). How could they guess, without further
instruction, that one should always carry over from the column immediately left of
the present one, rather than from the leftmost column? Only a refined understand-
ing of the algorithm's design and purpose can help. Yet the very occurrence of
such absurd errors suggests that the child's brain registers and executes most cal-
culation algorithms without caring much about their meaning.

1 3 3
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Pros and Cons of the Electronic Calculator

What coherent picture emerges from this panorama of human arithmetic abili-

ties? Clearly, the human brain behaves unlike any computer that we currently

know of. It has not evolved for the purpose of formal calculation. This is why

sophisticated arithmetic algorithms are so difficult for us to faithfully acquire and

execute. Counting is easy because it exploits our fundamental biological skills for

verbal recitation and one-to-one correspondence. But memorizing the multiplica-

tion table, executing the subtraction algorithm, and dealing with carryovers are

purely formal operations without any counterpart in a primate's life. Evolution

can hardly have prepared us for them. The Homo sapiens brain is to formal calcu-

lation what the wing of the prehistoric bird Archaeopteryx was to flying: a clumsy

organ, functional but far from optimal. To comply with the requirements of

mental arithmetic, our brain has to tinker with whatever circuits it has, even if

that implies memorizing a sequence of operations that one does not understand.

We cannot hope to alter the architecture of our brain, but we can perhaps

adapt our teaching methods to the constraints of our biology. Since arithmetic

tables and calculation algorithms are, in a way, counternatural, I believe that we

should seriously ponder the necessity of inculcating them in our children. Luckily,

we now have an alternative—the electronic calculator, which is cheap, omnipres-

ent, and infallible. Computers are transforming our universe to such an extent

that we cannot confine ourselves thoughtlessly to the educational recipes of yes-

teryear. We have to face this question: Should our pupils still have to spend hun-

dreds of hours reciting multiplication tables, as their grandparents did, in the

hope that arithmetic facts will eventually be engraved in their memories? Would it

not be wiser to give them early training in electronic calculators and computers?

Reducing the part played by rote arithmetic at school may be judged a heresy.

Yet there is nothing sacred in the way arithmetic is currently taught. Until recent-

ly, in many countries, the abacus and finger counting were the privileged vectors

of arithmetic. Even today, millions of Asians pull out their "soro-ban," the Japan-
ese abacus, whenever they have to calculate. The most experienced of them prac-
tice the "mental abacus": By visualizing abacus moves in their heads, they can add
two numbers mentally in less time than it takes us to type them into a calculator!

These examples show that there are alternatives to the rote learning of arith-

metic.
One might object that electronic calculators atrophy children's mathematical

intuitions. This opinion has been vehemently defended, for instance, by the
famous French mathematician and Fields Medal winner Rene Thorn, who wrote,
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"In primary school we learned the addition and multiplication tables. It was a
good thing! I am convinced that when children as young as six or seven are
allowed to use a calculator, they eventually attain a less intimate knowledge of
number than the one we reached through the practice of mental calculation."

Yet what may have been true for schoolboy Thorn need not hold for the aver-
age child today. Anyone can judge for himself the purported ability of our
schools to teach an "intimate knowledge of number." When a pupil readily con-
cludes, without batting an eyelid, that 317-81 is 376, perhaps there is something
rotten in the educational kingdom.

I am convinced that by releasing children from the tedious and mechanical
constraints of calculation, the calculator can help them to concentrate on mean-
ing. It allows them to sharpen their natural sense of approximation by offering
them thousands of arithmetic examples. By studying a calculator's results, chil-
dren can discover that subtraction always yields a result smaller than the starting
number, that multiplying by a three-digit number always increases the size of the
starting number by two or three digits, and thousands of similar facts. The mere
observation of a calculator's behavior is an excellent way of developing number
sense.

The calculator is like a road map for the number line. Give a calculator to a
five-year-old, and you will teach him how to make friends with numbers instead
of despising them. There are so many fascinating regularities to be discovered
about arithmetic. Even the most elementary of them looks like pure magic to
children. Multiplying by 10 adds a zero on the right. Multiplying by 11 duplicates
a digit (2x 11 =22,3x 11 =33, etc.). Multiplying by 3, then by 37, makes three copies of
it (9x3x37=999). Can you figure out why? Because these childish examples might
leave mathematically advanced readers unsatisfied, here are some more sophisti-
cated ones:

• 1 1 x 1 1 = 121; 1 1 1 x 1 1 1 = 12321; 1111x1111=1234321; and so on. Do you see why?
• 12345679X9 =111111111. Why? Note that the 8 is lacking!
• 11 -3x3 = 2; 1 1 1 1 -33x33 = 22; 1 1 1 1 1 1 -333x333 = 222; and so on. Prove it!
• 1+2 = 3; 4+5+6 = 7+8; 9+10+11 + 12= 13+14+15; and so on. Can you find a sim-

ple proof?

Do you find these arithmetic games barren and dull? Do not forget that before
the age of six or seven, children do not yet despise mathematics. Everything that
looks mysterious and excites their imagination feels like a game to them. They
are open and ready to develop a passion for numbers if only one were willing to
show them how magical arithmetic can be. Electronic calculators, as well as



136 Beyond Approximation

mathematical software for children, hold the promise of initiating them to the

beauty of mathematics; a role that teachers, all too occupied in teaching the
mechanics of calculation, often do not accomplish.

This being said, can and should the calculator serve as substitute to rote men-

tal arithmetic? It would be foolish to pretend that I have the definitive answer.

Reaching for a pocket calculator in order to compute 2x3 is obviously absurd, but

no one is pushing toward such extremes. Yet it should be acknowledged that

today the vast majority of adults never perform a multidigit calculation without

resorting to electronics. Whether we like it or not, division and subtraction algo-

rithms are endangered species quickly disappearing from our everyday lives—

except in schools, where we still tolerate their quiet oppression.

At the very least, using calculators in school should lose its taboo status.

Mathematics curricula are not immutable, much less perfect. Their sole objective

should be to improve children's fluency in arithmetic, not perpetuate a ritual.

Calculators and computers are only a few of the promising paths that educators

have begun to explore. Perhaps we should study the teaching methods used in

China or Japan in a less condescending manner. Recent studies by psychologists

Harold Stevenson, from the University of Michigan, and Jim Stigler, from UCLA,

suggest that these methods are often superior in many ways to those used in

most Western countries. Just consider this simple example: In the West, we gen-

erally learn multiplication tables line after line, starting with the "times two" facts

and ending with the "times nine" facts, for a total of 72 facts to be remembered.

In China, children are explicitly taught to reorder multiplications by placing the

smallest digit first. This elementary trick, which avoids relearning 9x6 when one

already knows 6x9, cuts the amount of information to be learned by almost one

half. It has a notable impact on calculation speed and error rates of Chinese

pupils. Obviously, we do not have the monopoly on a well-conceived curriculum.

Let us keep our eyes open to all potential improvements, whether they come

from computer science or psychology.

Innumeracy: Clear and Present Danger?

In the Western educational system, children spend much time learning the

mechanics of arithmetic. Yet there is a growing suspicion that many of them
reach adulthood without having really understood when to apply this knowledge
appropriately. Lacking any deep understanding of arithmetic principles, they are

at risk of becoming little calculating machines that compute but do not think.
John Paulos has given their plight a name: innumeracy, the analogue of illiteracy
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in the arithmetical domain. Innumerates are prompt in drawing hazardous con-
clusions based on a reasoning that is mathematical only in appearance. Here are a
few examples:

 because 1+2 = 3 and 5+5 = 10.

•i 0.2 + 4 = 0.6 because 4+2 = 6.
« 0.25 is greater than 0.5 because 25 is greater than 5.
* A basin of water at 35° C, plus another basin of water at 35° C,makes fora

tub of very hot water at 70° C (stated by my six-year-old son).
"i The temperature is in the 80s today, twice as warm as last night, when the

temperature was 40° F.
» There is a 50% chance of rain for Saturday, and also a 50% chance of rain

for Sunday, so there is a 100% certainty that it will rain over the weekend
(heard on the local news by John Paulos).

» One meter equals 100 centimeters. Since the square root of 1 is 1, and the
square root of 100 is 10, shouldn't one conclude that 1 meter equals 10 cen-
timeters?

• Mrs. X is alarmed: the new cancer test that she took was positive. Her doc-
tor certifies that the test is highly reliable and reads positive in 98% of can-
cer cases. So Mrs. X is 98% certain of having cancer. Right? [Wrong. The
available information supports absolutely no conclusion. Suppose that only
one person in 10,000 ever develops this type of cancer, and that the test
yields a 5% rate of false positives. Of 10,000 people taking the test, about
500 will test positive, but only one of them will really suffer from cancer. In
that case, despite her results, Mrs. X still only has one chance in 500 of
developing cancer. ]

In the United States, innumeracy has been promoted as a cause for national
concern. Alarming reports suggest that, as early as preschool, American children
lag way behind their Chinese and Japanese peers. Some educators view this
"learning gap" as a potential threat to American supremacy in science and tech-
nology. The designated culprit is the educational system, its mediocre organiza-
tion, and the poor training of its teachers. On the French side of the Atlantic,
about every other year a similar controversy announces a new drop in children's
mathematical achievement.

A French mathematics educator, Stella Baruk, has shrewdly analyzed the
share of responsibility that is borne by the educational system in children's math-
ematical difficulties. Her favorite example is the following Monty Pythonesque
problem: "Twelve sheep and thirteen goats are on a boat. How old is the cap-
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tain?" Believe it or not, this problem was officially presented to French first- and

second-graders in an official survey, and a large proportion of them earnestly

responded "Twenty-five years, because 12+13=25"—an amazing example of innu-

nieracy!

Though there are serious reasons for being concerned by the widespread

incompetence in mathematics, my own belief is that our school system is not the

only one to blame. Innumeracy has much deeper roots: Ultimately, it reflects the

human brain's struggle for storing arithmetical knowledge. There are obviously

many degrees of innumeracy, from the young child who thinks that tempera-

tures can be added to the medical student who fails to compute a conditional

probability. Yet all such errors share one feature: Their victims directly jump to

conclusions without considering the relevance of the computations they per-

form. This is an unfortunate counterpart to the automatization of mental calcu-

lation. We become so skillful at the mechanics of calculation that arithmetic

operations sometimes start automatically in our heads. Check your reflexes on

the following problems:

• A farmer has eight cows. All but five die. How many cows remain?

• Judy owns five dolls, which is two fewer than Cathy. How many dolls does

Cathy have?

Did you feel an impulse to answer "three" to both problems? The mere pre-

sentation of the words "fewer than" or "all but" suffices to trigger an automatic

subtraction scheme in our minds. We have to fight against this automatism. A

conscious effort is needed to analyze the meaning of each problem and form a

mental model of the situation. Only then do we realize that we should repeat the
number 5 in the first problem, and add 5 and 2 in the second problem. The inhibi-

tion of the subtraction scheme mobilizes the anterior portion of the brain, a

region called the prefrontal cortex, which is involved in implementing and con-

trolling nonroutine strategies. Because the prefrontal cortex matures very slowly

—at least up to puberty and probably beyond—children and adolescents are
most vulnerable to arithmetical impulsiveness. Their prefrontal cortical areas

have not yet had much opportunity to acquire the large repertoire of refined con-

trol strategies required to avoid falling into arithmetic traps.
My hypothesis, then, is that innumeracy results from the difficulty of control-

ling the activation of arithmetic schemas distributed in multiple cerebral areas. As

we shall see in Chapters 7 and 8, number knowledge does not rest on a single spe-
cialized brain area, but on vast distributed networks of neurons, each performing
its own simple, automated, and independent computation. We are born with an

"accumulator circuit" that endows us with intuitions about numerical quantities.
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With language acquisition, several other circuits that specialize in the manipula-
tion of number symbols and in verbal counting come into play. The learning of
multiplication tables recruits yet another circuit specialized for rote verbal memo-
ry; and the list could probably go on for a long while. Innumeracy occurs because
these multiple circuits often respond autonomously and in a disconcerted fash-
ion. Their arbitration, under the command of the prefrontal cortex, is often slow
to emerge. Children are left at the mercy of their arithmetical reflexes. Regardless
of whether they are learning to count or to subtract, they focus on calculation
routines and fail to draw appropriate links with their quantitative number sense.
And so innumeracy sets in.

Teaching Number Sense

If my hypothesis is correct, innumeracy is with us for a long time, because it
reflects one of the fundamental properties of our brain: its modularity, the com-
partmentalization of mathematical knowledge within multiple partially autono-
mous circuits. In order to become proficient in mathematics, one must go
beyond these compartmentalized modules and establish a series of flexible links
among them. The numerical illiterate performs calculations by reflex, haphazard-
ly and without any deep understanding. The expert calculator, on the contrary,
juggles mentally with number notations, moves fluently from digits to words to
quantities, and thoughtfully selects the most appropriate algorithm for the prob-
lem at hand.

From this perspective, schooling plays a crucial role not so much because it
teaches children new arithmetic techniques, but also because it helps them draw
links between the mechanics of calculation and its meaning. A good teacher is an
alchemist who gives a fundamentally modular human brain the semblance of an
interactive network. Unfortunately, our schools often do not quite meet this chal-
lenge. All too often, far from smoothing out the difficulties raised by mental cal-
culation, our educational system increases them. The flame of mathematical
intuition is only flickering in the child's mind; it needs to be fortified and sus-
tained before it can illuminate all arithmetic activities. But our schools are often
content with inculcating meaningless and mechanical arithmetical recipes into
children.

This state of affairs is all the more regrettable because, as we have seen, most
children enter preschool with a well-developed understanding of approximation
and counting. In most math courses, this informal baggage is treated as a handi-
cap rather than as an asset. Finger counting is considered a childish activity that a
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good education will quickly do away with. How many children try to hide when

they count on their fingers because "the teacher said not to"? Yet the history of

numeration systems repeatedly proves that finger counting is an important pre-

cursor to learning base 10. Likewise, failing to retrieve 6+7=13 from rote memory

is considered an error, even if the child later proves his or her excellent command

of arithmetic by recovering the result indirectly—for instance, by remembering

that 6+6 is 12 and that 7 is one unit after 6. Blaming a child for calling on indirect

strategies blatantly ignores that adults use similar strategies when their memory

fails.

Despising children's precocious abilities can have a disastrous effect on their

subsequent opinion of mathematics. It accredits the idea that mathematics is an

arid domain, detached from intuition and ruled by arbitrariness. Pupils feel that

they are supposed to do as the teacher does, whether or not they can make any

sense of it. A random example: Developmental psychologist Jeffrey Bisanz asked

six- and nine-year-old pupils to calculate 5+3-3. The six-year-olds often responded

5 without calculating, rightly noting that +3 and -3 cancel each other. However

the nine-years-olds, although they were more experienced, stubbornly performed

the calculation in full (5+3=8, then 8-3=5). "It would be cheating to take short-

cuts," explained one of them.
The insistence on mechanical computation at the expense of meaning is rem-

iniscent of the heated debate that divides the formalist and intuitionist schools of

mathematical research. The formalist trend, which was founded by Hilbert and

was pursued by major French mathematicians grouped under the pseudonym of

Bourbaki, set as its goal the anchoring of mathematics on a firm axiomatic

base. Their objective was to reduce demonstration to a purely formal manipula-

tion of abstract symbols. From this arid vision stemmed the all-too-famous

reform of "modern mathematics," which ruined the mathematical sense of a

generation of French pupils by presenting, according to an actor of this period,

"an extremely formal education, cut from any intuitive support, presented on the

basis of artificial situations, and highly selective." For instance, the reformers

thought that children should be familiar with the general theoretical principles of
numeration before being taught the specifics of our base-10 system. Hence,

believe it or not, some arithmetic textbooks started off by explaining that 3+4 is 12
—in base 5! It is hard to think of a better way to befuddle children's thinking.

This erroneous conception of the brain and of mathematics, in which intu-

ition is discouraged, leads to failure. Studies conducted in the United States by
David Geary and his colleagues at the University of Missouri-Columbia indicate
that about 6% of pupils are "mathematically disabled." I cannot believe that a
genuine neurological handicap affects that many children. Although cerebral
lesions can selectively impair mental calculation, as we will see in Chapter 7, they
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are relatively infrequent. It seems more likely that many of these "mathematical-
ly disabled" children are normally abled pupils who got off to a false start in
mathematics. Their initial experience unfortunately convinces them that arith-
metic is a purely scholastic affair, with no practical goal and no obvious meaning.
They rapidly decide that they will never be able to understand a word about it.
The already considerable difficulties posed by arithmetic to any normally consti-
tuted brain are thus compounded by an emotional component, a growing anxi-
ety or phobia about mathematics.

We can fight these difficulties if we ground mathematical knowledge on con-
crete situations rather than on abstract concepts. We need to help children realize
that mathematical operations have an intuitive meaning, which they can repre-
sent using their innate sense of numerical quantities. In brief, we must help them
build a rich repertoire of "mental models" of arithmetic. Consider the example
of an elementary subtraction, 9-3=6. As adults, we know of many concrete situa-
tions to which this operation applies: a set scheme (a basket containing nine
apples, from which one takes away three apples, now only has six), a distance
scheme (in any board game, in order to move from cell 3 to cell 9, six moves are
required), a temperature scheme (if it is 9 degrees and the temperature drops 3
degrees, then it will be only 6 degrees), and many others. All such mental models
seem equivalent to our adult eyes, but they are not so to the child who must dis-
cover that subtraction is the operation suited to all of them. The day the teacher
introduces negative numbers and asks pupils to compute 3-9, a child who only
masters the set scheme judges this operation impossible. Taking 9 apples from 3
apples? That's absurd! Another child who relies exclusively on the distance
scheme concludes that 3-9=6, because indeed the distance from 3 to 9 is 6. If the
teacher merely maintains that 3-9 equals "minus six," the two children run the
risk of failing to understand the statement. The temperature scheme, however,
can provide them with an intuitive picture of negative numbers. Minus six
degrees is a concept that even first-graders can grasp.

Consider a second example: the addition of two fractions Vz and 1/3. A child
who has in mind an intuitive picture of fractions as portions of a pie—half a pie,
and then another third of a pie—will have little difficulty figuring out that their
sum falls just below 1. He or she may even understand that the portions must be
cut: into smaller identical pieces (i.e., reduced to the same denominator) before
they can be regrouped in order to compute the exact total 1/2 + 1/3 = 5/6. In contrast,
a child for whom fractions have no intuitive meaning and are merely two digits
separated by a horizontal bar is likely to fall into the classic trap of adding the
numerator and denominator: 1/2 + 1/3= (l + l)/(2+3) = 2/5! This error may even be jus-
tified by a concrete model. Suppose that in the first period Michael Jordan scores
once in two shots, for an average of Vz, and that in second period he scores once
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in three shots, for an average of Vs. Over the entire game he would have scored

twice in five shots. Here is a situation in which 1/2 "plus" 1/3 equals 2/5 When one

teaches fractions, it is vital to let the child know that one has a "portion of pie"

scheme in mind rather than a "scoring average" scheme. The brain is not content

with abstract symbols: Concrete intuitions and mental models play a crucial role

in mathematics. This is probably why the abacus works so well for Asian children;

it provides them with a very concrete and intuitive representation of numbers.

But let us leave this chapter with a note of optimism. The craze for "modern

mathematics," based on a formalist vision of mathematics, is losing momentum

in many countries. In the United States, the national council of teachers of math-

ematics is now de-emphasizing the rote learning of facts and procedures and is

focusing instead on teaching an intuitive familiarity with numbers. In France—

the country that was most directly struck by "Bourbakism"—many teachers no

longer wait for a psychologists' advice to tell them to head back to a more con-

crete approach to mathematics. Schools have slowly readopted concrete educa-

tional material such as Maria Montessori's bicolored bars, Seguin's tables, unit

cubes, ten bars, hundreds plaques, dice, and board games. The French Ministry of

Education, after several reforms, seems to have dropped the idea of turning each

schoolchild into a symbol-crunching machine. Number sense—indeed, common

sense—is making a comeback.

In parallel to this welcome change, education psychologists in the United

States have demonstrated empirically the merits of an arithmetic curriculum that

stresses concrete, practical, and intuitive mental models of arithmetic. Sharon

Griffin, Robbie Case, and Robert Siegler, three North-American developmental

psychologists, have joined efforts to study the impact of different educational
strategies on children's understanding of arithmetic. Their theoretical analysis,

like mine, emphasizes the central role played by an intuitive representation of

quantities on the mental number line. On this basis, Griffin and Case designed

the "RightStart" program, an arithmetic curriculum for kindergartners that com-

prises entertaining numerical games with varied concrete pedagogical materials

(thermometers, board games, number lines, rows of objects, etc.). Their goal was
to teach children from low-income inner-city neighborhoods the rudiments of
arithmetic: "The central objective of the program is to enable children to relate

the world of numbers to the world of quantity and consequently, to understand
that numbers have meaning and can be used to predict, to explain, and to make

sense of the real world."
Most children spontaneously understand the correspondence between num-

bers and quantities. Underprivileged children, however, may not have grasped it
before entering preschool. Lacking the conceptual prerequisites for learning

arithmetic, they run the risk of losing ground in mathematics courses. The
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RightStart program attempts to set them back on the right path using simple
interactive arithmetic games. For example, in one section of the program, chil-
dren are invited to play a simple board game that teaches them to count their
moves, to subtract in order to find out how far they are from the goal, and to
compare numbers in order to discover who is closest to winning the game.

The results are remarkable. Griffin, Case, and Siegler have tried their program
in several inner-city schools in Canada and the United States, mostly with immi-
grant children from low-income families. Children who were lagging behind
their peers participated in forty 20-minute sessions of the RightStart program and
were propelled to the top of their class as of the next semester. They even out-
ranked pupils with a better initial command of arithmetic but who had followed
a more traditional curriculum. Their advance was consolidated in the next school
year. This extraordinary success story should bring some consolation to the
teachers and parents who feel that their children are allergic to mathematics. In
fact, most children are only too pleased to learn mathematics if only one shows
them the playful aspects before the abstract symbolism. Playing snakes and lad-
ders may be all children need to get a head start in arithmetic.



Geniuses and
Prodigies

An expert is a man who has stopped thinking—he knows!
Frank Lloyd Wright

O
ne of the most romantic episodes in the history of mathematics
occurred one morning in January 1913, when professor G. H. Hardy

received a strange-looking letter from India. At thirty-six, Hardy was a

renowned mathematician, probably England's most brilliant. Professor at Trinity

College in Cambridge, he had recently been elected a fellow of the Royal Society.

There he often conversed on equal terms with minds as remarkable as

Whitehead and Russell. So one can imagine his growing irritation as he
skimmed through this letter posted in Madras. In rudimentary syntax, an

unknown Indian named Srinavasa Ramanujan lyengar requested his opinion on

several theorems.
Despite his unforgiving contempt for amateur mathematicians, Hardy

quickly became fascinated as he began to decipher with increasing attention his

correspondent's mysterious mathematical formulas (Figure 6.1). Some were

long-established theorems—but why on earth did the man present them as if
they were his? Others were derived, sometimes via indirect routes, from deep
mathematical results that Hardy knew very well for having personally con-
tributed to them. The last few formulas, however, were unheard of, long strings

1 4 4

Chapter 6



Geniuses and Prodigies 1 4 5

of square roots, exponentials, and continuous fractions mixed in a unique cock-
tail whose origins remained incomprehensible.

Never had Hardy seen anything like this. It could not be a hoax: He was
assuredly confronted with a first-rate genius. As he later explained in his autobi-
ography, "The formulas had to be true because, if they were not, no one would
have had the imagination to invent them." The following day, Hardy resolved to
help Ramanujan come to Cambridge. This was the starting point of an extremely
fertile collaboration that culminated with Ramanujan's election to the Royal
Society a few years later, and ended tragically with his death on April 26, 1920, at
the age of 32.

One could argue, with only a pinch of irony, that Ramanujan's genius overran
Isaac Newton's, because he had seen further than any other mathematician with-
out sitting on anybody's shoulders. Born to a poor Brahmin family, Ramanujan
had received only nine years of study at Kumbakonam's local school, in South
India, and had never obtained a university degree. Early on in his childhood, how-
ever, his genius was already apparent. He had rediscovered on his own the
famous Euler formulas that link trigonometric and exponential functions, and by
the time he was twelve he had already mastered S. Loney's Plane Trigonometry.

At sixteen, Ramanujan encountered a second book that decided his mathe-
matical bent. It was G. S. Carr's Synopsis of Elementary Results in Pure and Applied
Mathematics—a compilation of 6,165 theorems with only sketchy demonstra-
tions. By dint of studying this austere volume and reinventing for himself the

Figure 6.1. A small sample of Ramanujan's mysterious formulas. The bottom expression for

number is correct to twenty decimal places.
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mathematics of past centuries, Ramanujan acquired a singular genius that no

mathematician before or after him seems to have possessed to the same degree:

an uncanny sense of the right formula, a refined intuition of numerical relations.

He was unmatched in his ability to envision novel arithmetical relations that

nobody had dreamt of previously, and which he generally accepted on the basis

of intuition alone—to the great despair of his fellow mathematicians who, until

very recently, have been at pains to provide rigorous proofs or refutations for the

hundreds of formulas that filled his notebooks.

Ramanujan claimed that his theorems were "written on his tongue" during

the night by the goddess Namagiri. On getting out of bed, he would often fever-

ishly write down some unexpected result that would later stun his colleagues.

Personally, I am rather skeptical about the central role played by Indian divinities

at the forefront of mathematical research. But the ball is in the neuropsycholo-

gist's court—can psychology or neurology propose at least an embryo of an ex-

planation for the extraordinary fertility of this unique mind?

Almost fifty years after Ramanujan's death, England saw the birth of another

genius whose talent was, in several respects, the exact parallel and yet the oppo-

site of Ramanujan's. Michael is a profoundly retarded autistic young man who

was studied for years by two English psychologists, Beate Hermelin and Neil

O'Connor. As a child, he suffered from macrocephalia and had convulsions that

probably betrayed early brain damage. He was an upset and destructive child,

oblivious to danger, who seemed to live in a shut-down and self-centered world.

Never did he wave good-bye or point to objects—gestures that very young chil-

dren normally acquire spontaneously. Never did he show any interest in the com-

pany of adults.
Although Michael is now in his twenties, he still cannot speak. He never

learned sign language and shows no evidence that he understands words. His ver-

bal IQ is not measurable in any test that requires the use of words. Even in a non-

verbal test, his IQ only reaches 67. He fails essentially on all tests tapping everyday

knowledge of objects.
Why compare this severely handicapped autistic man with an Indian mathe-

matical genius? Because despite his dramatic mental retardation, Michael is extra-

ordinarily conversant in arithmetic. Around the age of six, he learned to copy
some letters and the ten Arabic digits. Since then, adding, subtracting, multiply-

ing, dividing, and factoring numbers have been his favorite pastimes. Money,

clocks, calendars, and maps also fascinate him. When measured with logical
tests, his IQ reaches 128, way above the normal mean. Here is a young man who
cannot name a car or a rabbit, but who immediately perceives that 627 can be

decomposed into 3x11x19! It takes Michael only a little over one second to deter-
mine that a three-digit number is prime (which means that it cannot be expressed
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as the product of two smaller numbers). A psychologist with a mathematics
diploma who attempted this task took ten times longer.

How can one be mute, mentally retarded, and a lightning calculator? How can
one grow up in a poor Indian family and become a top-level mathematician with
only the help of two books largely devoid of demonstrations? Psychologists now
know hundreds of "idiot savants" similar to Michael throughout the world. Some
can tell you the day of the week for any past or future calendar date. Others can
mentally add two six-digit numbers in less time than it would take us to dial them
on a phone. Yet these people are often totally devoid of social intelligence and
may even lack language. Does not the very existence of such prodigies jeopardize
the theory that I sketched in previous chapters? How do they escape the calcula-
tion difficulties that we are all confronted with? What is the nature of the "sixth
sense" that confers on them such a soundness of intuition in the numerical
domain? Should we grant them a special form of cerebral organization, an innate
gift for arithmetic?

A Numerical Bestiary

The role of memory in mathematics is easily underestimated. Each of us
unconsciously garners hundreds of numerical facts—consider, for instance, the
evocative power of the numbers 1492, 800, 911 or 2000. The size of this numeri-
cal memory store is undoubtedly one of calculating prodigies' main strengths.
Their familiarity with numbers is so refined that, for them, hardly any number is
random. What appears to us as an ordinary series of digits assumes a singular
meaning for them. As explained by the lightning calculator G. P. Bidder: "The
number 763 is represented symbolically by three figures 7-6-3; but 763 is only one
quantity, one number, one idea, and it presents itself to my mind just as the word
"hippopotamus" presents the idea of one animal."

Each calculating genius maintains a mental zoo peopled with a bestiary of
familiar numbers. Being on familiar terms with numbers, knowing them inside
out, are the hallmark of these expert arithmeticians. "Numbers are friends to me,
more or less," says Wim Klein. "It doesn't mean the same for you, does it, 3,844?
For you it's just a three and an eight and a four and a four. But I say: 'Hi, 62
squared!' "

Abundant biographical anecdotes confirm the extreme familiarity with which
great mathematicians manipulate the tools of their trade, be they numbers or
geometrical figures. The following dialog took place between Hardy and
Rarnanujan while the Indian mathematician was slowly dying of tuberculosis in a
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sanitarium. "The taxi that I hired to come here bore the number 1729," said

Hardy. "It seemed a rather dull number," "Oh no, Hardy," retorted Ramanujan.

"It is a captivating one. It is the smallest number that can be expressed in two dif-

ferent ways as a sum of two cubes" — 1,729 = 13 +123 = 103 +93!

Gauss, another exceptional mathematician as well as a calculating prodigy, is

credited with a similar performance at a young age. His teacher asked his class to

add all numbers from 1 to 100, probably hoping to keep his pupils quiet for a half-

hour. But little Gauss immediately raised his slate with the result. He had rapidly

perceived the symmetry of the problem. By "mentally folding" the number line,

he could group 100 with 1, 99 with 2, 98 with 3, and so on. Hence the sum was

reduced to 50 pairs, each totaling 101, for a grand total of 5,050.

The French mathematician Francois Le Lionnais stresses how "the aptitudes

for mental calculation and for mathematics ... have in common a certain sensibil-

ity to what I shall call the personality of each number." In 1983, Le Lionnais pub-

lished a little book called Remarkable Numbers, in which he listed several hundred

numbers with special mathematical properties. His fascination for numbers start-

ed at the age of five. After studying the multiplication table printed on the back of

his notebook, he was awed to discover that the multiples of 9 ended with the dig-

its 9, 8, 7, 6, and so on (as in 9, 18, 27, 36, etc.; Can you see why?). As a schoolboy,

a student, and eventually as a professional mathematician, he spent the rest of his

life hunting for genuinely "odd" numbers and other deep mathematical results.

His files were lost when he was deported to a German camp during World War

II, but he started all over again from memory and added ever more gems to his

collection, year after year.
In the end, his list of remarkable numbers reveals a significant amount of

what a top-level mathematician must know in arithmetic. Most of his bestiary

will remain forever opaque to the profane. For instance, 244,823,040, one of the

few numbers to which he grants three stars, is described by him in standard math-

ematical language as "the order of group M24, the ninth sporadic group, an exam-

ple of which is the group of Steiner automorphisms with indices (5,8,24)"—a

definition that leaves most of us cold! Here are some of the most accessible mon-

uments in this Fodor's guide to the number line:

the famous "golden section" that supposedly underlies many works of arts, such
as the Parthenon. Enter it in your pocket calculator and then press the "1 /x" or

"x2 keys. The result will surprise you.
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• 4: the minimum number of colors needed to color any planar map so that
no two neighboring countries have the same color. Not unlike Kasparov's
recent loss in chess to an IBM computer, the "four-color theorem" is
famous in mathematics for marking the limits of human reasoning: Its
proof calls for the successive examination of so many special cases that only
a computer can complete it.

• 81: the smallest square that can be decomposed into a sum of three squares
( 9 2 = l 2 + 42 + 82).

• a real number that falls remarkably close to an integer: Its first
twelve decimals are all 9s (another of Ramanujan's contributions).

• The number formed by writing down 317 times the digit 1, which is a prime
• 1,234,567,891, also a prime
• And even 39, the smallest integer with no remarkable mathematical proper-

ties—which, as Le Lionnais himself notes, raises a paradox: Doesn't it
make number 39 remarkable after all?

The Landscape of Numbers

As one browses through Le Lionnais's surrealist inventory, one cannot but
think that some mathematicians must be more familiar with the number line
than with their own backyard. Indeed, the metaphor of a "panorama of mathe-
matics" seems particularly apt at capturing their vivid introspection. Most of
them feel that mathematical objects have an existence of their own, as real and
tangible as that of any other object. Says Ferrol, a well-known calculating prodi-
gy: "I often feel, especially when I am alone, that I dwell in another world. Ideas
of numbers take on a life of their own. Suddenly, questions of any kind rise
before my eyes with their answers."

The same conception is found in the writings of the French mathematician
Alain Connes: "Exploring the geography of mathematics, little by little the math-
ematician perceives the contours and structure of an incredibly rich world.
Gradually he develops a sensitivity to the notion of simplicity that opens up
access to new, wholly unsuspected regions of the mathematical landscape."

Connes thinks that expert mathematicians are endowed with a clairvoyance, a
flair, a special instinct comparable to the musician's fine-tuned ear or to the wine
taster's experienced palate that enables them to directly perceive mathematical
objects: "The evolution of our perception of mathematical reality causes a new
sense to develop, which gives us access to a reality that is neither visual, nor audi-
tory, but something else altogether."
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In The Man Who Mistook His Wife for a Hat, Oliver Sacks describes two autistic

twins whom he once caught exchanging very large prime numbers. His interpre-

tation also appeals to a certain "sensibility" about the mathematical world:

They are not calculators, and their numeracy is "iconic." They summon up,
they dwell among, strange scenes of numbers; they wander freely in great
landscapes of numbers; they create, dramaturgically, a whole world made of
numbers. They have, I believe, a most singular imagination—and not the least
of its singularity is that it can imagine only numbers. They do not seem to
"operate" with numbers non-iconically, like a calculator, they "see" them
directly, as a vast natural scene.

For Rene Thorn, the renowned creator of the mathematical theory of cata-

strophes, an intuitive perception of mathematical spaces is so essential that any

mathematician who reaches the limits of his intuition feels unspeakable anxiety:

"I do not feel easy with infinite dimensional spaces. I know that these are well-

charted mathematical objects, whose many states are perfectly known, yet I do

not like to be in a space with infinitely many dimensions. (Is it distressing?)

Certainly.... It is a space, precisely, that defies intuition."

One can almost hear Pascal—another precocious mathematical prodigy—

who stated in his Pensees: "The eternal silence of these infinite spaces frightens

me."

The tight link between mathematical and spatial aptitudes has often been

empirically demonstrated. Strong correlation exists between a person's mathe-

matical talent and his or her scores on spatial perception tests, almost as if they

were one and the same ability. Beate Hermelin and Neil O'Connor recruited a

group of children between twelve and fourteen, who were judged by their teach-

ers as particularly gifted in mathematics. They presented the children with prob-

lems that challenged their sense of spatial relations. Here is a small selection:

• How many diagonals can one draw on the surface of a cube?
• A painted wooden cube with a 9-centimeter edge is cut up into little cubes

with a 3-centimeter edge each. There are thus twenty-seven such little

cubes. How many of them will have only two painted sides?

Mathematically talented children were brilliant in this test. Their classmates

with a standard level of achievement in mathematics, although they had an
equivalent overall IQ, obtained flatly lower scores—even those that were remark-
ably gifted in the arts. But perhaps it is not surprising that spatial competence
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correlates so strongly with success in mathematics. Ever since Euclid and
Pythagoras, geometry and arithmetic have been tightly linked. Establishing a spa-
tial number map is a fundamental operation in the human brain. As we will see
later on, the cerebral areas that contribute to number sense and to spatial repre-
sentations occupy neighboring convolutions.

Many mathematical geniuses have claimed to possess a direct perception of
mathematical relations. They say that in their most creative moments, which
some describe as "illuminations," they do not reason voluntarily, nor think in
words, nor perform long formal calculations. Mathematical truth descends on
them, sometimes even during sleep, as in Ramanujan's case. Poincare often
declared that his intuitions convinced him of the veracity of a mathematical re-
sult, although it later took him hours of calculation to prove it formally. But it is
probably Einstein himself who, in a letter published by Hadamard in his famous
Essay on the Psychology of Invention in the Mathematical Field, articulated most clear-
ly the role of language and intuition in mathematics: "Words and language,
whether written or spoken, do not seem to play any part in my thought process-
es. The psychological entities that serve as building blocks for my thought are
certain signs or images, more or less clear, that I can reproduce and recombine
at will."

This conclusion would certainly not be challenged by Michael, the lightning-
fast autistic calculating genius who lacks language. Great mathematicians' intu-
itions about numbers and other mathematical objects do not seem to rely so
much on clever symbol manipulations as on a direct perception of significant
relations. In that respect, calculating prodigies and talented mathematicians per-
haps differ from the average human being only in the size of the repertoire of
number facts that they can mobilize in a fraction of a second. In Chapter 3, we
saw how all humans were endowed with an intuitive representation of numerical
quantities, which is automatically activated whenever we see a number and
which specifies that 82 is smaller than 100 without requiring any conscious effort.
This "number sense" is embodied in a mental number line oriented from left to
right. Only 5 percent to 10 percent of people experience it consciously as a spatial
extension with varied colours and a twisted shape. Perhaps the great human cal-
culators are one step further on this continuum. They seem to also often perceive
numbers as a spatially extended domain, but with an even greater resolution and
an amazing wealth of detail. In the mind of the calculating prodigy, each number
does not just light up as a point on a line, but rather as an arithmetical web with
links in every direction. Faced with the number 82, Ramanujan's brain instantly
evokes 2x41, 100-18, 9 2 +l 2 , and sundry other relations as obvious to his eyes as
"smaller than 100" is to ours.
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We still have to explain, however, where this prodigious intuitive memory of

numbers comes from. Is it an innate gift, product of an unusual form of cerebral

organization? Or does it merely result from years of training in arithmetic?

Phrenology and the Search for
Biological Bases of Genius

Scientists have long been intrigued by calculating prodigies. Several theories

accounting for their genius, many of them eccentric, have been put forward in

the popular press. Popular candidates are gifts of God, inborn knowledge,

thought transmission, or even reincarnation. Even Alfred Binet, the famous psy-

chologist who invented the first intelligence tests, conformed to this all-out

search for an explanation. In 1894, in his influential book on The Psychology of

Great Calculators and Chess Players, which is still frequently cited, he discusses the

origins of the talent of perhaps the most famous calculator of that time, Jacques

Inaudi. Binet then cites, "with all the reservations that one might expect," the fol-
lowing anecdote:

It appears that Inaudi's mother, while pregnant, went through psychological
hardship. She watched her husband squander their meager fortune and fore-
saw that money would soon be lacking to face the many bills that were soon
falling due. Fearing that their possessions might be seized, she computed men-
tally how much she should save to honour their commitments. Her days were
spent buried in numbers, and she had become a calculating maniac.

Binet, being a conscientious scientist, dutifully asked himself : "Is this report

accurate? And if so, could the mother's mental state have had any real influence

on her son?". That Binet took this issue so seriously shows clearly how the

Lamarckian theory of the inheritance of acquired traits was still very much alive

in 1894, despite the publication of Darwin's Origins of Species in 1859.
In fact, earlier in the nineteenth century, a scientific theory of intellectual tal-

ent had already been proposed and was a recurring topic of intense discussions—
the phrenological theory of mental organs. As early as 1825, Franz-Joseph Gall

published his theory of "organology," later christened "phrenology" by Johann

Caspar Spurzheim. His proposal clearly affirmed a materialistic vision of mind
and brain that, although often ridiculed, had a profound influence on many emi-
nent neurophysiologists, among them Paul Broca and John Hughlings Jackson.

Gall's organology postulated a division of the brain into a large number of spe-
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Figure 6.2. A highly figurative vision of the various cerebral organs postulated by phrenologists.

The "sense of numerical relations," better known as the "math bump," was arbitrarily placed

behind the eye.

cialized regions constituting as many independent innate "mental organs." Each
organ supposedly subtended a precise mental faculty: the instinct of reproduc-
tion, the love of one's progeny, the memory for things and facts, the language
instinct, the memory of persons, and so on. Twenty-seven faculties, which were
quickly extended to thirty-five in later versions of the theory were assigned to
specific cerebral territories, often on a purely fanciful basis. In this list, the "sense
of number relations" figured amid the many organs that were attributed to
frontal brain areas (Figure 6.2).

Given that mental faculties were innate, how could one explain their varia-
bility from one individual to the other? Gall postulated that the relative size of
cerebral organs determined each person's mental dispositions. In great mathe-
maticians, Gall reasoned, the amount of tissue dedicated to the organ of number
relations was way above average. Of course the size of cerebral convolutions was
not directly accessible to measurement. But Gall proposed a simplifying assump-
tion: The cranial bone, shaped by cortex during its growth, directly reflected the
size of the underlying organs with humps and hollows. Mathematical talent
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could therefore be detected during childhood by "craniometry," the measure-
ment of the deformations of the cranium. In contemporary French, a popular

saying for a person highly talented in mathematics is that he or she has a "bump

for math"—an expression directly inherited from phrenology.
Under the influence of Gall's theory, nineteenth-century scholars expended

considerable effort on comparing the size and shape of skulls from people of dif-
ferent races, occupations, and intellectual levels—a scientific epic that Stephen

Jay Gould has brilliantly narrated in The Mismeasurement of Man. Many renowned

scientists fell under the spell of this fad and bequeathed their heads to science so
that, in a morbid post-mortem competition, the volume of their brain matter
could be compared to that of colleagues and average men. In Paris, the societe

anthropologique dedicated numerous sessions to Georges Cuvier, the famous

French zoologist and paleontologist. The dimensions of his skull and even of his

hat fueled a heated debate between Broca, an ardent supporter of craniometry,

and Gratiolet, who contested it. Gauss's brain, which was of an average weight
but was thought to have more convolutions than an ordinary German worker's

brain, seemed to support Broca (Figure 6.3). Broca also noted, according to Binet,
that "the young Inaudi's head was very bulky and irregular," while Charcot him-

Figure 6.3. A drawing dating from the end of the nineteenth century shows many more convolu-

tions in the brain of the genial mathematician Carl Friedrich Gauss than in an "average" German

worker—an unlikely difference that probably owes more to the engraver's imagination and selec-

tion biases than to real cerebral anatomy.
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self found "a slight protrusion of the right frontal hump and, on the back, a left
parietal protrusion" as well as "a longitudinal crest of 0 m. 02 formed by the

raised right parietal bone." The purported smaller size of the encephalon in

"Negroes," women, and gorillas was interpreted as an additional proof of the
tight correlation between brain size and intelligence. Needless to say, all these

analyses were fraught with blatant errors that Gould, among others, has repeat-

edly denounced.
A century and a half later, what remains of phrenology and craniometry?

Although some racists from all political sides periodically attempt to revive it, the
hypothesis of a direct link between brain size and intelligence has been refuted
time and again. (Gall's brain itself weighted only 1,282 grams, or 520 grams less
that Cuvier's!) The legacy of Gall's organology, however, is less clear-cut. In fact,

the functional specialization of cerebral areas is no longer a disputed hypothesis.
It is now an established fact that every square millimeter of cortex contains neu-

rons highly specialized for processing specific information. Indeed, we will see
later how cerebral lesion studies and new methods of functional brain imaging

now enable neuroscientists to draw up a sketchy map of the cerebral networks
involved in mental calculation.

While these recent results undoubtedly surpass Gall's and Spurzheim's
wildest dreams, they do not confirm their theory of the localization of "mental
faculties." Contrary to phrenological theory, modern images of the brain never

pinpoint a complex faculty such as language or calculation to a single, monolithic
brain area. On contemporary maps of the brain, only very elementary functions
—the recognition of a fragment of a face, the invariance of color, or the com-

mand of a motor gesture—can be assigned to a narrow cerebral region. The sim-

plest mental act, such as reading a word, requires the orchestration of multiple
assemblies of neurons distributed in diverse brain regions. It will never be possi-
ble to isolate the language area, even less the convolution that controls abstract

thought or the region specialized in religious devotion—with all due respect to
the researchers who still pursue the search for an area in charge of consciousness
or altruism!

Another durable, though dubious, legacy from Gall's theory is the hypothe-
sis that intellectual talent derives from an inborn gift, a biological predisposition
to genius. In 1894, Binet thought that an "innate aptitude" accounted for the
achievements of calculating prodigies. "The emergence of their faculty recalls a
sort of spontaneous generation," he affirmed. Yet the study of gifted and retard-
ed children later changed his mind. A decade later, he denied that intelligence was
innate, and became an ardent supporter of special education as a means of com-
pensating for mental retardation. To many other scientists, however, the concept
of an "innate gift" was hard to kill. Even today, one of the foremost experts on
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"idiot savants," Neil O'Connor, perpetuates this tradition, going as far as to state

that "the abilities involved [in autistic prodigies] are like innate programs of skill

which come about independently of any effort of learning."

The belief that intellectual abilities are biologically determined is deeply

anchored in Western thought, especially in the United States. To take just one

example, psychologists Harold Stevenson and Jim Stigler have studied how

American and Japanese parents rate the influence of their children's efforts versus

inborn abilities in their performance at school. In Japan, the amount of effort and

the quality of teaching are heralded as the most critical parameters. In the United

States, on the other hand, most parents and even children themselves consider

that success or failure in mathematics depends mostly on one's innate talents and

limitations. A nativist bias is perceptible even in our vocabulary when we speak of

talent as a "gift" (from whom?) or a "disposition" (set by whom?). The word "tal-

ented," indeed, is often considered as the opposite of "hardworking."
Until recently, even the supporters of nativist theories of intelligence scoffed

at Gall's simplistic hypothesis that talent was directly proportional to the size of

certain cerebral convolutions. In the last few years, however, this organological

conception has made a surprising comeback in the forefront of neuroscience

research. Two articles in the best international scientific journals have reported

that high levels of musical competence are accompanied by an unusual extension

of certain cortical areas. In musicians with perfect pitch—the ability to accurate-

ly identify the absolute pitch of a single note—a region of left-hemispheric audi-

tory cortex named the planum temporale appears to be larger than that of control

subjects who are devoid of this talent, regardless of whether or not they play an

instrument. And in string players, the region of the sensory cortex dedicated to

the tactile representation of the fingers of the left hand shows an exceptional

expansion. Has musical talent been mapped?
In fact, such correlational data do not necessarily support nativist theories a la

Gall. Studies of brain plasticity have revealed that experience may deeply modi-

fy the internal organization of brain areas. The architecture of the adult brain

results from a slow process of epigenesis that extends beyond puberty and during
which cortical representations are modeled and selected as a function of their

use for the organism. Practicing the violin for several hours a day since early
childhood may therefore substantially alter a young musician's neuronal net-

works, their extension, and perhaps even their macroscopic morphology. This
is considered the most likely explanation for the expansion of somato-sensory
cortex in string players, because the younger the age at which the instrument was
played, the greater the effect. Similar radical experience-dependent alterations
in cortical topography have been repeatedly observed in the sensory cortex of
monkeys. Modern neuroscience thus completely overturns Gall's hypothesis.
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Phrenologists considered the cortical surface allocated to a given function as an
innate parameter that ultimately determined our level of competence. Quite the
contrary, neuroscientists now think that the time and effort one dedicates to a
domain modulates the extent of its representation in the cortex.

A decade ago, new studies of Einstein's brain, aroused the attention of the
media. Most anatomical measures of that mythical organ, which is preserved in a
jar of formaldehyde, were disappointing: The inspired founding father of mod-
ern physics seemed to be equipped with a very unexceptional encephalon. Its
weight, for instance, was only about 1,200 grams, which is not much even for
an old man. However, in 1985, two researchers reported an above-average density
of glial cells in a posterior region of the brain called the angular gyrus or
Brodmann's area 39, which belongs to the inferior parietal lobule. This area, as
we shall see later on, plays a critical role in the mental manipulation of numerical
quantities. Hence it was perhaps not unreasonable that its cellular organization
should distinguish Einstein from average humans. Had the biological cause of
Einstein's excellence finally been exposed?

In fact, this research is plagued by the same ambiguities as the studies of musi-
cians' cortical topography. Even granting that Einstein's cellular density exceeded
the normal variability between individuals, which is not yet proved, how can one
separate causes from consequences? Einstein may have been endowed from birth
with a phenomenal number of inferior parietal cells, predisposing him to learn
mathematics. But in the current state of our knowledge, the opposite seems
equally plausible: The constant use of this cerebral region may have deeply mod-
ified its neuronal organization. Ironically enough, the biological determinants of
relativity theory, if any, are thus forever lost in this chicken-and-egg conundrum.
Who said that all was relative?

Is Mathematical Talent a Biological Gift?

One argument that has often been exploited to validate the search for the genetic
bases of mathematical talent derives from the correlation between the mathe-
matical achievements of siblings, especially between homozygotic twins. Homo-
zygotic twins, who have the same genotype, often seem to exhibit similar levels of
performance in mathematics. Heterozygotic twins, who share only half of their
genes, appear to be more variable: Occasionally one soars in mathematics while
the other stays at a mediocre level. By comparing achievement across many
pairs of homozygotic and heterozygotic twins, a measure of "heritability" can be
computed. According to studies conducted in the 1960s by Steven Vandenberg,
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heritability in arithmetic would amount to about 50%—implying that about half

the variance in arithmetical performance is due to genetic differences among
individuals.

This interpretation, however, remains hotly contested. Indeed, the twins

method is at the mercy of many trivial influences. For instance, studies have

shown that homozygotic twins receive identical education, in the same class-

room, with the same teacher, more often than heterozygotic twins. The fact that

they are similarly talented may thus be due to the shared features of their educa-

tion rather than to their genes. Another potential confound: In their mother's

uterus, close to 70% of homozygotic twins share a single placenta or a single set

of membranes. This, of course, is never the case for heterozygotic twins, who are

born from two separate ova. Thus, the comparable biochemical composition of

the uterine environment may perhaps impose common regularities on the devel-

oping brains of homozygotic twins. Finally, even if the genetic heritability of

mathematical talent were proved, the twins method provides no indication of the

genes involved. These could very well have no direct relation to mathematics. To

take an extreme example, suppose that a gene influences body size. It could have

a negative influence on mathematical abilities simply because its bearers play bas-

ketball more often, and their mathematics education suffers!
In the search for the biological bases of mathematical talent, another intrigu-

ing though ambiguous cue is provided by differences between men and women.

High-level mathematics are almost exclusively a masculine realm. Of the forty-

one calculating prodigies described by Steven Smith in his well-documented book

on great mental calculators, only three are female. In the United States, Camilla

Benbow and her colleagues have administered a test initially designed for teen-

agers, the Scholastic Aptitude Test for Mathematics (SAT-M), to a large group of

12-years-olds. The average grade is usually around 500 points. For every girl who

already exceeds this score in her twelfth year, two boys do. This ratio reaches 4:1

when the grade is raised to 600 points, and to 13:1 beyond 700 (Figure 6.4). Hence

the proportion of males increases dramatically as one considers increasingly

bright populations of mathematical students. This advantage for males is
observed in all countries, from China to Belgium. Men's supremacy in mathe-

matics is a worldwide phenomenon.
The importance of this phenomenon for the general population must be

qualified, however. Only the mathematical elite is almost exclusively made up of

men. In the population as a whole, men's supremacy is weaker. The impact of
gender on a psychological test is measured statistically by dividing the mean dif-
ference between men and women by the dispersion of the scores within each

gender. In adolescents, this value typically does not exceed one-half, meaning that
the distributions of male and female scores overlap considerably: One-third of
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Figure 6.4. In Camilla Benbow's sample of talented seventh-grade students, standard aptitude

tests reveal a small but consistent advantage for males over females in mathematics. Verbal scores,

in contrast, are distributed identically for males and for females. (Reprinted from Benbow 1988 by

permission of the publisher; copyright © 1988 by Cambridge University Press.)

the men fall below the average female score, or conversely, one-third of the
women fall above the average male score. The male advantage also varies with
the content of the tests. In mathematical problem solving, men clearly take the
lead, but in mental calculation, women rank first by a narrow margin. Finally,
while a discrepancy between boys and girls emerges from preschool on, no sys-
tematic advantage seems detectable before schooling starts. Babies' precocious
abilities for arithmetic, in particular, are no more prevalent in males than in
females.

In spite of these qualifications, the male hegemony in high-level mathematics
raises important issues. Mathematics serves as a filter at several critical stages in
our educational systems, and each time, more boys make it than girls. In the end,
our society leaves women few opportunities to acquire top-level training in math-
ematics, physics, or engineering. Sociologists, neurobiologists, and politicians
alike would like to know whether this distribution of educational resources justly
reflects the natural talents of each gender, or whether it merely serves to perpet-
uate the biases of our male-governed society.

No doubt, many psychological and sociological factors disfavor women in
mathematics. Surveys have shown that, on average, women show greater anxiety
than men in mathematics courses; they are less confident in their capacities; they
view mathematics as a typically masculine activity that will be of little use in their
professional careers; and their parents, especially their fathers, share this feeling.
Of course, these stereotypes aggregate into a self-fulfilling prophecy. Young
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women's lack of enthusiasm for mathematics and their conviction that they will

never shine in this domain contribute to their neglect of mathematics courses

and hence their lower level of competence.

Very similar stereotypes account for the discrepancies in mathematical
achievement according to social class. I am convinced that the prejudices that our

societies convey about mathematics are largely responsible for the gap that sepa-

rates the mathematical scores of men and women, as well as those of rich and

poor—a gap that could partially be filled by political and social changes in atti-

tudes toward mathematics. In China, for instance, the most gifted female teen-

agers obtain mathematical scores that exceed not only those of American female

teenagers, but also those of American male teenagers—a clear proof that the dif-

ference between men and women is small compared to the impact of education-

al strategies. A recent meta-analysis of dozens of publications suggests that the

average gap between American men and women has been reduced by one-half

during a thirty-year period, an evolution that parallels the concomitant improve-

ment in the female's status over the same period.

This being said, do biological gender differences play any role in the remain-

ing gap? Though no clear neurobiological or genetic determinants of the male

advantage in mathematics have been found yet, a bundle of convergent clues

fuels a growing suspicion that biological variables do contribute to mathematical

talent, however remotely. In a population of children exceptionally gifted in

mathematics, one finds thirteen boys for one girl. Compared to an unselected

group of boys and girls, gifted children are also twice as likely to suffer allergies,

four times as likely to be myopic, and twice as likely to be left-handed. More than

50% of these budding mathematicians are either left-handers, or ambidextrous,

or right-handers with left-handed siblings. Finally, 60% of them are first-born
children. Obviously, the archetype of the scholar as a single child, gauche, sickly,

and wearing glasses is not totally unfounded!

One might perhaps explain away the association of myopia with mathemati-

cal talent by appealing to some attitudinal cause—maybe short-sighted children

delve into mathematics books more willingly because they are poor at, say, base-
ball. A similar argument might be proposed for birth order: Perhaps first-borns
receive a subtly different education that somehow encourages mathematical

thinking. But allergies and handedness do not easily lend themselves to such a
"soft" explanation. Furthermore, there are conclusive, though admittedly more

extreme cases in which mathematical capacities are clearly affected by a sex-relat-
ed neurogenetic anomaly. For instance, a majority of calculating prodigies of the
"idiot savant" kind suffer from autism, a neurological disease that strikes boys

four times more often than girls. Indeed, autistic symptoms are associated with

genetic anomalies of the X chromosome, such as the fragile X syndrome.
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Conversely, Turner's syndrome is a genetic disease that affects only women and is
linked to a missing X chromosome. As it turns out, in addition to certain physical
malformations, women with Turner's syndrome suffer from a profound and spe-
cific cognitive deficit in mathematics and in the mental representation of space,
even though their IQ may be at a normal level. Their handicap is caused in part
by an abnormally feeble secretion of sex hormones due to an atrophy of the
ovaries. Indeed, early hormonal treatment is known to improve their mathemati-
cal and spatial performance.

We still do not have a satisfactory explanation for these mysterious links
between gender, the X chromosome, hormones, handedness, allergies, birth
order, and mathematics. All we can do today is paint an impressionist picture of
some of the more plausible causal chains—which some scientists have dubbed
"just so stories"! According to neuropsychologist Norman Geschwind and his
colleagues, exposure to an elevated level of testosterone during gestation might
simultaneously affect the immune system and the differentiation of the cerebral
hemispheres. Testosterone may slow down the development of the left hemi-
sphere. One can imagine that the likelihood of being left-handed should then
increase, as should the ability to manipulate mental representations of space, a
function that is more dependent on right-hemispheric processing. This refined
sense of space, in turn, would ease the manipulation of mathematical concepts.
Because testosterone is a male hormone, this putative cascade of effects could
have stronger consequences for males than females. Not implausibly either, it
may also be under the partial genetic control of the X chromosome, which may
account for the heritability of mathematical and spatial dispositions.

Among the bundles of clues that gravitate around this still fuzzy scenario are
these: Androgens are known to directly influence the organization of the devel-
oping brain; alterations of the processing of space and mathematics have been
demonstrated in subjects exposed to an abnormal level of sex hormones during
development, as well as in females at various points in the menstrual cycle; in
rats, the spatial abilities of hormonally treated females exceed those of untreated
females and catch up with those of untreated males; and finally, the concentra-
tion of sex hormones in the womb is higher during the first pregnancy (remem-
ber that the majority of mathematical prodigies are first-born). Shaped in this
variable hormonal bath, the male brain is probably organized slightly differently
from the female brain. Neuronal circuits may be subtly altered in a manner that
remains largely unknown so far but which may explain men's slightly swifter
motility in abstract mathematical spaces.

It is frustrating to be unable, given the current state of knowledge, to go
beyond theoretical fuzziness and to exhibit a simple, determinist account of
mathematical talent. But it would surely be naive to expect direct links from
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genes to genius. The gap is so wide that it can only be filled by a multiplicity of

twisted causal chains. Genius emerges from an improbable confluence of multi-

ple factors—genetic, hormonal, familial, and educational. Biology and environ-

ment are intertwined in an unbreakable chain of causes and effects, annihilating

all hopes of predicting talent through biology or of giving birth to a baby Ein-

stein by crossbreeding two Nobel Prize winners.

When Passion Produces Talent

The limits of a biological account of talent are nowhere more evident than in the

case of "idiots savants" with a minuscule island of genius in an ocean of incom-

petence. Consider the case of Dave, a fourteen-year-old boy who has been stud-

ied by Michael Howe and Julia Smith. In an instant, Dave can give the day of the

week corresponding to any past or future date. But his IQ does not reach 50, he

reads at the level of a six-year-old, and he hardly speaks. Moreover, unlike

Michael, whom I described earlier in this chapter, Dave knows close to nothing

about mathematics. He is even totally unable to multiply. What biological para-

meter could possibly have given Dave both a gift for "calendrology" and an aver-

sion to reading and calculation? How could the brain be predisposed to acquire

the Gregorian calendar, which has existed in its present form only since 1582?

Dave's gift, if there is one, must reside in some generic parameter, such as memo-

ry or powers of concentration. To explain the narrowness of his talent, one must

obviously appeal to learning. Neither genes nor hormones can instill innate

knowledge about the month of December.

It turns out that Dave spends hours at a time scrutinizing the kitchen calendar

and drawing it from memory, in part because playing with other children is

beyond his social competence. Dave suffers from severe autism. Like a Robinson

Crusoe lost in an affective desert, his only companions in solitude are called

Friday or January. Suppose that he dedicates three hours a day to calendars (sure-
ly an underestimate). In ten years, his training would amount to ten thousand
hours of extreme concentration—an enormous duration that may explain both

his deep understanding of the calendar and the considerable gaps in his knowl-

edge of all other domains.
From calendar to mental calculation, a similar obsessive concentration charac-

terizes all calculating prodigies, past or present. Why should anyone dedicate all
his energy to such a narrow field? Among the great mental calculators, perhaps
we should distinguish three main categories: the professionals, the idle, and the
mentally deficient. The first are mathematicians in full possession of their mental
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powers, whose profession requires an in-depth knowledge of arithmetic. For
them, calculation can become second nature. Gauss, by his own account, often
found himself counting his steps without any conscious intention. As for
Alexander Aitken, another brilliant mathematician, he claimed that calculations
were set off automatically in his mind: "If I go for a walk and if a motor car pass-
es and it has the registration number 731,1 cannot but observe that it is 17 times
43." Not infrequently, as in Gauss's case, such mathematicians lose part of their
calculation abilities as they move on to more abstract spheres of the mathemati-
cal universe.

In the second category, the idle, I would place calculators whose profession is
so dull that they delve in calculation as a pastime. A typical example: Jacques
Inaudi and Henry Mondeux, both shepherds, who reinvented much of arithmetic
in their lonesome pastures. Both never ceased to count: not only their sheep, but
also pebbles, their steps, the time spent balancing on a stool.

Finally, the third category, the mentally deficient, consists of mentally retard-
ed people such as Dave or Michael, who live in an autistic world, and whose pas-
sion for numbers or calendars is pathological and symptomatic of their lack of
interest for human relations. Jedediah Buxton, an eighteenth-century English cal-
culating prodigy, was most probably autistic. Alfred Binet thus describes Buxton's
first: night at the theater where Richard III was playing:

He was later asked if the performance had pleased him: he had only seen in it
an occasion to calculate; during the dances, he had focused his attention on
the number of steps: they numbered 5,202; he had also counted the number
of words that the actors had pronounced: this number was 12,445 ... and all
this was found to be exact.

Whatever its motivation, could such an infusion of numbers, year after year,
suffice to explain the blossoming of an extraordinary talent for calculation?
Could anyone, with sufficient training, turn into a calculating prodigy, or does it
take a special, biological "gift"? To tease apart nature from nurture, a few re-
searchers have tried to turn average students into calculating or memory prodi-
gies through intensive training. Their results prove that passion breeds talent. K.
Anders Ericsson, for instance, has shown that a hundred hours of training suffice
to expand one's digit span to at least twenty digits—eighty digits in one particu-
larly persevering subject. Another psychologist, J. J. Staszewski, has taught a
handful of students several strategies for fast calculation. After 300 hours of train-
ing spread over two or three years, their calculation speed quadrupled: They took
only about thirty seconds to compute mentally 59,451 x86.

These learning experiments are in line with the intuitions of the great calcula-
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tors themselves, who declare that they have to practice daily or else see their tal-
ent decline. According to Binet, for instance, "Having dedicated one month to
studying books, [Inaudi] saw that he was losing much of his mental powers. His
mental calculation abilities only remain stable thanks to ceaseless training."

Alfred Binet also reports a comparison of Jacques Inaudi's calculating speed
with that of professional cashiers at the Bon Marche in Paris. Prior to automated
cash registers, cashier was a respected profession. Genuine human calculators
spent eight to ten hours a day, six days a week, adding up purchases and multiply-
ing lengths of linen by the price per meter. Although most were hired between
the age of fifteen and eighteen with no particular aptitude for arithmetic, they
quickly became lightning calculators. Binet found that they were no slower than
Inaudi. Indeed, one of them took only four seconds to compute 638x823, clearly
better than Inaudi's six seconds. The sheer extent of his memory, however,
enabled Inaudi to win the race in more complex calculations.

The case of the Bon Marche cashiers illustrates the absence of any sharp
demarcation between professionals whose talent derives from intense training,
and geniuses who supposedly owe their feats to an innate gift. Indeed, until
recently, the Center for Nuclear Research in Geneva employed Wim Klein for his
arithmetic powers; and Zacharias Dase, in the nineteenth century, contributed
greatly to mathematics by establishing a table of natural logarithms for numbers
1 through 1,005,000 and by factoring all numbers between 7 and 8 million.

Today, society no longer values mental calculation. Great show-business
human calculators are hard to come by. Thus, the professionals of centuries gone
by appear all the more prodigious. Nowadays, in the West at least, whoever
forced a child to calculate several hours a day would expose himself to a lawsuit
—though our society condones the dedication of the same amount of time to
piano or chess playing. Oriental societies do not share our value scales. In Japan,
it is a well-accepted practice to send children to evening arithmetic courses where
they learn the secrets of the "mental abacus." At the age of ten, the most enthusi-
astic of them can apparently exceed the performance of our Occidental calculat-
ing prodigies.

Ordinary Parameters for Extraordinary Calculators

A talent for calculation thus seems to arise more from precocious training, often
accompanied by an exceptional or even pathological capacity to concentrate on
the narrow domain of numbers, than from an innate gift. This conclusion fits in
with the thinking of two of the past centuries' greatest geniuses: Thomas Edison,
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for whom "genius is 1 percent inspiration and 99 percent perspiration," and the

French naturalist Buffon, who confessed—with counterfeit humility?—that

"genius is but a greater aptitude for patience."
Supporting this thesis, psychometric studies have not detected any major

modification in the fundamental parameters of cerebral functioning of lightning
calculators. Outside of their specialty, these prodigies' information-processing

speed turns out to be average or slower. Consider Shakuntala Devi, a female
Indian calculator with astounding speed. (The Guinness Book of World Records
grants her the ability to multiply two thirteen-digit numbers in thirty seconds,
although this may be exaggerated.) The psychometrician Arthur Jensen—who

has often championed the biological determinism of intelligence in the past—

invited her to his laboratory in order to measure her performance on some classi-
cal tests. Jensen's article hardly conceals his disappointment: There was nothing

exceptional in the time it took this arithmetic genius to detect a light flash or to
select one motor action out of eight. Devi's performance in a so-called "intelli-
gence" test, Raven's progressive matrices, did not depart much from average. And
when she had to search for a visual target or look for a number in memory, she

was abnormally slow. To borrow a computer science metaphor, Devi's calcula-
tion feats were obviously not due to a global speed-up of her internal clock: Only
her arithmetic processor ran with lightning speed.

In the preceding chapter, we saw that one can predict with remarkable preci-
sion the time a normal subject will require to do a multiplication. The more ele-

mentary the operations needed and the larger the digits concerned, the slower

the calculation. In this respect too, calculating prodigies are no different from the
average person. A century ago, Binet timed Inaudi while he was solving multipli-
cation problems. Here are some of his results:

3x7

63x58

638x823

7,286x5,397

58,927x61,408

729,856x297,143

calculation time in seconds

0.6

2.0

6.4

21

40

240

number of operations

1

4

9

16

25

36

The column on the right shows how many elementary operations are needed
in the traditional multiplication algorithm. This quantity predicts Inaudi's calcula-
tion time rather well, with the exception of the most complex multiplication
problems, which are disproportionately slow because of the greater memory
load. It would be remarkable if Inaudi had been able to multiply two three-digit
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numbers in barely more time than two single digits. This would indicate that he

was using a radically different algorithm, perhaps allowing for the execution of

multiple operations in parallel. But this is not the case for Inaudi nor for any oth-

er arithmetic genius that I know of. Great calculators struggle with great calcula-
tions like the rest of us.

One final characteristic may bespeak an inborn talent: the extraordinary

memory exhibited by most lightning calculators. For Binet, this issue was beyond

discussion: "In my opinion, memory is the calculating prodigy's essential charac-

teristic. By his memory, he is inimitable and infinitely superior to the rest of

humanity."

Binet distinguished two kinds of prodigies, the visual calculators who memo-

rize a mental image of written numbers and calculations, and the auditory ones,

like Inaudi, who claim that they remember numbers by hearing them recited in

their head. Perhaps one should also add a third category, the "tactile" calculators,

since at least one blind lightning calculator, Louis Fleury, maintained that he

manipulated numbers mentally as though he were holding some cubarithms, the
tactile numerical symbols used by the blind. Regardless of its modality, however,

great calculators' memory span is often no less than astounding. Inaudi, for

instance, could repeat 36 random digits without error after having heard and

repeated them only once. At the end of his daily exhibitions, he never failed to

repeat in full the 300-some digits that the public had dictated to him throughout

the show.

Undeniably, Inaudi's memory span reached astounding heights, but does this

imply that it was innate? Aside from countless anecdotes whose reliability is often

questionable, we know little about the childhoods of these prodigies. As yet,

nothing proves that they possessed amazing memory abilities at an early age. It

seems to me equally plausible that their fantastic memory is the result of years of

training as well as their great familiarity with numbers.

Steven Smith, who has carefully studied the lives of dozens of calculating

prodigies, reaches the same conclusion: "Mental calculators, no less than other

mortals, are subject to short-term memory limitations. Where they differ is in
their ability to treat groups of digits as single items in memory."

Memory span, indeed, is not an invariant biological parameter such as blood
group that can be measured independently of all cultural factors. It varies consid-

erably with the meaning of the items to be stored. I can easily remember a fif-
teen-word sentence in French, my first language, because its meaning helps. In

Chinese, however, which I do not understand, my memory span drops to about
seven syllables. Likewise, perhaps the reason why great calculators manage to
store vast amounts of digits is that numbers are almost their mother tongue.

There is hardly a combination of digits that does not make sense to them. In
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Hardy's memory, the taxi license plate 1729 was probably registered as four inde-

pendent digits because it looked like any random number. For Ramanujan, how-

ever, 1729 was a childhood friend, a familiar character that occupied only one cell
in his memory. In general, I think, the extreme familiarity that calculating prodi-
gies have with digits suffices to explain their huge memory span without having

to postulate a hypothetical biological gift for number memory.

Recipes for Lightning Calculation

In order to definitely shake off the myth of a "born calculator," I must however

explain what algorithms great calculators actually use. Unless I do so, the mental
multiplication of 5,498 by 912 or the immediate recognition that 781 is 11 x71 will

always be enshrouded in a spell of mystery. Most of us, indeed, have not the

slightest idea of how to solve such problems mentally. In fact several expedients
radically simplify even the most insurmountable-looking arithmetical puzzles.

So how can one compute mentally the product of two multidigit numbers?
Scott Flansburg, who became known as "the human calculator," makes no secret

of it: His exploits are entirely based on simple recipes that anyone can learn and
which he unveils in a recent bestseller. Like all other calculators, he uses calcula-
tion algorithms similar to those taught at school. However, the order in which he
performs each operation is carefully optimized. For addition, he recommends

computation from left to right. For multiplication, he always computes the most
significant digits of the result first. Each subproduct is immediately added to the

running total, thus avoiding memorization of several long intermediate results.
These diverse strategies are headed toward a single goal—minimizing memory

load—and they succeed because only a single provisional estimate of the result
must be stored and refined step after step.

More rarely, some calculators memorize all or part of the multiplication table
for all possible pairs of two-digit numbers. This allows them to multiply by
groups of two digits as if they were one. Finally, all calculators possess a huge
repertoire of shortcuts based on simple algebraic tricks. To give just one exam-
ple, the product of 37x39 is immediately identified as 382 -1 using the formula
(n+1} (n-1) = n2 -1; 382 itself equals 36x40+4 since n2 = (n-2)(n+2) +22. One needs only
to retrieve from memory the product of 36x4, which any experienced calculator
recognizes as 122 = 144, to which one adjoins the digit 3 (4-1), to conclude that 37
times 39 is 1,443! With a little training, applying this method becomes as fast as a
reflex.

In brief, great calculators obviously do not rely on any "magical" arithmetic
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methods. Like us, they rely heavily on stored tables of multiplication facts whose

only original features are their extent and, occasionally, their nonverbal format

(since some calculators, such as Michael, do not appear to have acquired any lan-

guage). Like us, they execute their calculations serially, digit after digit, thus

explaining Binet's response time measurements. Like us, finally, they quickly

select the best means of reaching the result in minimal time from the multiple

strategies at their disposal. In this respect, only the number of strategies that they

master differentiates them from the six-year-old who already spontaneously sim-
plifies 8+5 into (8+2)+3.

What about more complex arithmetical abilities, though? A single glance

is enough for Shakuntala Devi to notice that the seventh root of 170,859,375

is 15 (which means that this number is 15 to the seventh power, or

15x15x15x15x15x15x15). The extraction of roots of integers belongs in the classi-

cal repertoire of professional calculators. Naive spectators are always awed by

what they consider as a particularly difficult feat, especially for high-order roots.

In fact, however, easy shortcuts can dramatically reduce the calculations. For

instance, the rightmost digit directly informs us of the corresponding digit of the

result. When a number ends with 5, so does its root. In the case of fifth roots, the

starting number and its root always end with the same digit. In all other cases,

there is a correspondence which is easily learned and which gets even simpler if

one considers the last two digits instead of just one. The first digits of the result,

on the other hand, can often be found by trial and error using simple approxima-

tions. For instance the seventh root of 170,859,375 can only be 15 because 25, the

next candidate ending with 5, would obviously yield much too large a number
once raised to the seventh power. In brief, extracting the roots of integers, which

appears at first sight as a superhuman performance, can be reduced to the careful

application of simple recipes.

The ability to rapidly factorize numbers and to identify prime numbers is a

more impressive feat. Remember Michael, the autistic man who promptly recog-

nized that 389 is a prime number and that 387 can be decomposed into 9x43? The

twins whom Oliver Sacks described were even stranger. Their pastime, it was
claimed, consisted of taking turns and exchanging increasingly larger primes up

to six, eight, ten, or even twenty digits long!
While this ability seems truly amazing and is still far from being fully under-

stood, several tentative explanations may be proposed. First of all, contrary to a

widespread notion, the concept of a prime number is not the pinnacle of mathe-
matical abstraction. Primality is a very concrete notion that merely indicates
whether a collection of objects can be divided into several equal groups. Twelve
is not prime because it can be divided into three groups of 4 or two groups of 6.

Thirteen is a prime because no such grouping is possible. Hence, prime numbers
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are so common that children manipulate them unknowingly when they try to
organize square blocks into a rectangle—they quickly find that it can be done
with twelve blocks, but not with thirteen. No wonder, then, that a retarded
young man like Michael, with an uncanny passion for arithmetic, can sponta-
neously discover some of their properties.

Finding out whether a number is prime remains a difficult mathematical
problem. Yet the role of memory should not be neglected. There are only 168
prime numbers under one thousand and 9,592 prime numbers under a hundred
thousand. Once memorized, they can serve to compute the remaining primes up
to ten billion using an obvious algorithm called the sieve of Eratosthenes. Finally,
simple recipes known to any schoolboy, such as casting out the 9s, make it easy to
determine whether a number is divisible by 2, 3, 4, 5, 6, 8, 9, or 11. Such elemen-
tary tricks are apparently all that Michael was using, since he often erred with
numbers that looked prime but were in fact the product of factors that exceeded
his sagacity (for instance, 391 = 17x23). What of the twins? Unfortunately, no
details are available about the precise numbers they were exchanging or about
their potential errors. So we will never know if the method they employed was
any more precise than Michael's.

Researchers also often claim that some calculating prodigies can evaluate an
exact number of objects at a glance. Binet, for instance, asserted that one could
drop a fistful of marbles before Zacharias Dase and that he immediately reported
their exact number. Unfortunately, I do not know of any serious psychological
study on this purported phenomenon. There have been no measurements of
response times, which are the only way to assess whether a person is counting or is
really perceiving large numbers "instantaneously." My feeling is that great calcula-
tors' enumeration powers do not differ from ours. Confronted with a collection of
marbles, their visual system, like ours, rapidly parses it into small groups of one,
two, three, or four marbles. Their apparent speed may come from their ability to
add all these numbers in a flash, while we are at best reduced to counting by twos.

Finally, many prodigies develop a special ability for calendar calculation. Can
this also be attributed to simple strategies? Several well-known algorithms allow
one to compute the day of the week for any past or future date. The simpler of
them require only a few additions and divisions, and professional calculators no
doubt rely on such formulas. However, this explanation does not fit autistic chil-
dren who become calendrical prodigies. Most of them have never had access to a
perpetual calendar. One blind boy's talent developed even though he never had
access to a Braille calendar! Furthermore, some prodigies, such as Dave, are
unable to perform even the simplest of calculations. What, then, are the tricks
through which they compute the days of the week?

By timing the responses of several autistic prodigies, Beate Hermelin and Neil
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O'Connor have discovered that their response time is generally proportional to

the distance that separates the requested date from the present. This suggests that

most of these "human calendar calculators" use a very simple method: Starting

with a recent date, they proceed by degrees and progressively extrapolate to the

nearby weeks, months, or years. Many regularities facilitate this extrapolation

process: The calendar repeats itself every 28 years; weeks shift by one day for

each regular year and two days for leap years; March and November always start

on the same day, and so on. Most idiot savants use such knowledge to jump

directly from, say, March 1996 to November 1968. Thus they can instantly retrieve

from memory the requested page of the calendar, from which they merely have

to read the appropriate date.

How can such an algorithm, however simple, be invented and faultlessly exe-

cuted by an idiot savant whose IQ does not exceed 50? Dennis Norris, a Cam-

bridge researcher, has developed an interesting computer simulation of the

acquisition of calendrical knowledge in a neural network. His simulated network

comprises several hierarchical neuronal assemblies that successively receive

inputs coding for the day, the month, and the year of a random date between

1950 and 1999. At the output, seven units code for the seven days of the week.

Initially, the network does not know what day it should associate with a given

date. As it receives more and more examples—Monday, April 22,1996, or Sunday,

February 3, 1969, and so on—it progressively adjusts the weight of its simulated

synapses in order to adapt to the difficult task of predicting on what day each date

will fall. After several thousand trials, not only does it retain these examples, but it

also responds correctly to more than 90% of the novel dates that it has never

learned. Hence, the final network exhibits good knowledge of the mathematical

function that relates dates and days of the week—knowledge that is only implic-

it, since its synapses ignore anything about subtraction and addition, or even the

number of days in a year or the existence of leap years.

According to Norris, the nervous system is equipped with learning algorithms
far superior to those he used in his simulation. It thus appears entirely plausible

that an autistic child, even one severely retarded, who spends years studying the
calendar, may extract a mechanical, automated, and unconscious knowledge of it

by mere induction on many examples.

Talent and Mathematical Invention

In the final analysis, where does mathematical talent come from? Throughout

this chapter, every track that we have explored has led us to a plausible source.
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Genes probably play a part. But by themselves they cannot supply the blueprint
of a phrenological "bump" for mathematics. At best, together with several other
biological factors, perhaps including precocious exposure to sex hormones, genes
may minimally bias cerebral organization to aid the acquisition of numerical and
spatial representations. Biological factors, however, do not weigh much when
compared to the power of learning, fueled by a passion for numbers. Great calcu-
lators are so passionate about arithmetic that many prefer the company of num-
bers to that of fellow humans. Whoever dedicates that much time to numbers
must succeed equally well in increasing memory and in discovering efficient cal-
culation algorithms.

If only one lesson might be drawn from this analysis of talent, it would be that
high-level mathematics departs radically from its popular portrayal as a dryly ratio-
nal discipline, dominated by sheer deductive power, on which emotions have no
bearing. Quite the contrary, the most potent of human emotions—love, hope,
pain, or dispair—hold sway over the relationship these mathematicians entertain
with their number friends. When there is a passion for mathematics, talent does
not: lag very far behind. If, conversely, a child develops math anxiety, this phobia
can prevent even the simplest of mathematical concepts from falling into place.

My survey of mathematical talent has given equal footing to Ramanujan and
Michael, Gauss and Dave, the genius and the idiot savant. Yet can one really com-
pare the giants that extend the frontiers of mathematics and the autistic prodigies
that shine only because of the striking contrast between their mathematical abili-
ties and their profound mental retardation? My choice is justified by the many
characteristics that geniuses and calculating prodigies share—from their passion
for mathematics to their vision of a landscape populated by numbers. In my opin-
ion, it would be unfair to deny Inaudi or Mondeux the name of "genius" under
the pretext that they merely rediscovered well-known mathematical results.
When a shepherd, alone in his pasture, rediscovers Pythagoras's theorem, his tal-
ent is no less than that of his renowned predecessor to whose work he was never
exposed.

In this chapter I have deliberately avoided dwelling on the psychological and
neurobiological preconditions that underlie mathematical creativity. The flash of
invention is so brief that it can hardly be studied scientifically. At best one can
speculate, as did Jean-Pierre Changeux and Alain Connes, that scientific discovery
involves the more or less random association of old ideas, followed by a selection
based on the harmony and adequacy of a newly formed combination. Paul
Valery said, "It takes two persons to invent: one forms the combinations, the oth-
er chooses and recognizes what is desired or relevant among the set of products
of the first." Augustine likewise noted that cogito means "to shake together,"
while intelligo means "to select among."
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Jacques Hadamard, in his major investigation of invention in mathematics,

distinguishes stages of preparation, incubation, illumination, and verification.

Incubation consists of an unconscious search through fragments of demonstra-

tions or original combinations of ideas. In support of this central idea, Hadamard
quoted Henri Poincare: "Most striking at first is this appearance of sudden illumi-

nation, a manifest sign of long, unconscious prior work. The role of this uncon-

scious work in mathematical invention appears to me incontestable."

Some day we will perhaps understand the cerebral bases of this "cognitive

unconscious." The spontaneous activity of neuronal circuits below the threshold

of consciousness, the unleashing of automatic calculation mechanisms during

sleep—these must have measurable physiological traces that we can hope to

assess with modern brain imaging tools. At present, however, we can only heed

the question that Hadamard asked already half a century ago: "Will it ever hap-

pen that mathematicians will know enough about the physiology of the brain

and neurophysiologists enough of mathematical discovery for efficient coopera-

tion to be possible?"

Indeed, we will now look into brain physiology—not in the hope of uncover-

ing the biological bases of creativity, which would be a Utopian dream given the

current state of our knowledge; but at least to try to explain how the rudimenta-

ry paraphernalia of neurons, synapses, and receptor molecules incorporate into

the brain's circuits the routine of calculation and the meanings of numbers.
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Losing Number Sense
The true idea of the human mind is to consider it as a system

of different perceptions or different existences, which are
linked together by the relation of cause and effect, and mutually

produce, destroy, influence, and modify each other.... In this
respect, I cannot compare the soul more properly to anything

than to a republic or commonwealth, in which the several members
are united by the reciprocal ties of government and subordination.

David Hume, A treatise of human nature

I
s it possible that one could forget what 3 minus 1 means, while remaining able
to read and write four-digit numerals? Can you imagine being able to multiply
digits that appear on your right, but not those that appear on your left? Is it

possible, finally, for someone with normal vision to fail on written additions as
simple as 2+2, while easily solving the same problems when they are read aloud?

Strange as they may seem, such phenomena are routinely observed in neur-

ology. Cerebral lesions of various origins can have a devastating and some-

times surprisingly specific impact on arithmetic abilities. Everybody knows that a

lesion in the motor areas of the brain can cause paralysis to one side of the body
only. By the same mechanism, brain damage confined to the cerebral areas

involved in language or number processing can alter only a very narrow domain

of competence. The lesion seems to have few repercussions until the patient is

asked to subtract or to read an unusual word, and then a profound deficit is
unveiled.

As early as 1769, the French philosopher Denis Diderot anticipated the speci-
ficity of neurological impairment. In D'Alembert's Dream, he made this premoni-
tory statement:

1 7 5

Chapter 7
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According to your principles, it seems to me that with a series of purely
mechanical operations, I could reduce the greatest genius in the world to a
mass of unorganized flesh ... [The operation] would consist in depriving the
original bundle of some of its threads and shuffling up the rest.... Example:
take away from Newton the two auditory threads, and he loses all sense of
sound; the olfactory ones, and he has no sense of smell; the optic ones, and he
has no notion of colors; the taste threads, and he cannot distinguish flavors.
The others I destroy or jumble, and so much for the organization of the man's
brain, memory, judgment, desires, aversions, passions, willpower, conscious-
ness of self.

Cerebral lesions are indeed devastating events that can destroy the brightest

minds. Yet to neuroscientists these "experiments of nature" also offer a unique

glimpse into the workings of the normal human brain. Cognitive neuropsychol-

ogy is the scientific discipline that takes advantage of data from patients with

brain lesions to gather knowledge about the cerebral networks that serve cog-

nitive functions. The neuropsychologist's touchstone is dissociation, or the fact

that after cerebral damage, one domain of competence becomes inaccessible

while another remains largely intact. When two mental abilities are thus dissoci-

ated, one may often safely infer that they involve partially distinct neuronal net-

works. The first ability is deteriorated because it normally requires the

contribution of a cerebral area that has been damaged and is now unable to per-

form. The second remains intact because it rests on cerebral networks that have

been spared by the lesion. Of course, neuropsychologists must beware that more

trivial explanations for a dissociation exist. For instance, one task might simply

be easier than the other, or the patient might have relearned one ability but not

the other after the lesion occurred. When care is taken to reject such alternative

accounts, cognitive neuropsychology supports remarkable inferences about cere-

bral organization.

Let us consider a concrete example. Michael McCloskey, Alfonso Caramazza,

and their colleagues have described two patients with severe difficulties in reading
Arabic numerals. The first patient, known to us only by his initials H. Y., occa-

sionally misreads number 1 as "two" or 12 as "seventeen." A careful study of his
errors shows that while H. Y. often replaces one numeral with another, he never
errs in the decomposition of a number into hundreds, tens, and units. For

instance he reads 681 as "six hundred fifty-one."—the structure of the string is
correct except for the substitution of fifty for eighty. Conversely, the second
patient,]. E., never takes 1 for "two" or 12 for "seventeen," but he misreads 7,900

as "seven thousand ninety" or 270 as "twenty thousand seventy." Unlike H. Y,
J. E. does not substitute one number word for another. Instead, the whole gram-
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matical structure of the numeral is wrong. He recognizes individual digits, but

they wander from the hundreds to the decades or the thousands column.

Patients H. Y. and J. E. together realize a double dissociation. Schematically, the

grammatical structure of numerals is intact in H. Y. and deteriorated in J. E.,
while the selection of individual words is intact in J. E. and deficient in H. Y. The
very existence of two such patients suggests that some of the cerebral regions
engaged in reading Arabic numerals aloud contribute more heavily to number

grammar, while others are more concerned with accessing a mental lexicon for
individual number words. If the lesion was small enough—unfortunately, an

infrequent event with vascular lesions—its location could even provide valuable
indications as to exactly where in the brain these areas lie.

In interpreting such observations, one must of course beware of falling back
into phrenology. If patient J. E. errs in the grammar of numerals, this does not

mean that his lesion knocked out "the grammar area." Broad cognitive faculties
such as "grammar" are complex and integrated functions that likely imply the

concerted orchestration of several distributed areas of the brain. Most likely, J.
E.'s lesion affected a highly specialized elementary neuronal process essential to
the production of a grammatical sequence of number words, but not for the
selection of its component words.

The extreme modularity of the human brain stands out as the main lesson to
be gathered from studies of cerebral pathology. Each small region of the cortex
appears to be dedicated to a specific function and may thus be viewed as a mental
"module" specialized in processing data from a distinct source. Cerebral lesions
and the bizarre dissociation patterns they provoke provide us with a unique

source of information on the organization of these modules. Thanks to dozens

of handicapped patients such as H. Y. and J. E. who generously agreed to partici-
pate in scientific experiments, our knowledge of the cerebral areas involved in
number processing is now much deeper than it was barely ten years ago. To be

sure, the exact circuits used in complex arithmetic operations still escape us. Yet
an increasingly refined map of the cerebral pathways for numerical information
is slowly taking shape. Even the rudimentary knowledge we currently have of
the neurology of number processing already has considerable bearing on our
understanding of the relations between mathematics and the brain.

Mr. N, the Approximate Man

As Mr. N enters the examination room on a morning in September 1989, the dev-
astating effects of his cerebral lesion are obvious. His right arm is in a sling, and
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his crippled right hand betrays a severe motor handicap. Mr. N speaks slowly,

with effort. Occasionally, he searches with growing irritation for a very common

word. He cannot read a single word, and he fails to understand such moderately

complicated commands as "Place the pen on the card, then put it back in its orig-
inal location."

Mr. N was once married and is the father of two daughters. He held a position

of responsibility as a sales representative in a major firm, and he doubtless was

proficient in arithmetic. We know little about the circumstances in which his

world shattered. He apparently suffered a bad fall at home, perhaps due to sudden

brain hemorrhaging. Upon his arrival at the hospital, he suffered from an enor-

mous hematoma, and an emergency operation was performed. These dramatic

events left him with a vast lesion of the posterior half of the left hemisphere.

Three years later, his language and motor control handicaps are still so devastat-

ing that he cannot lead an independent life and lives with his elderly parents.

My colleague Dr. Laurent Cohen invited me to meet Mr. N because he suffers

from exceptionally severe acalculia, the neurologist's technical term for a deficit in

number processing. We ask him to calculate two plus two. After pondering for a

few seconds, he answers "three." He easily recites the rote numerical series 1, 2, 3,

4 ... and 2,4,6,8..., but when we ask him to count 9, 8, 7, 6 ... or 1, 3, 5, 7 . . . ,

he fails completely. He also fails to read the digit 5 when I flash it before his eyes.

Given this distressing clinical picture, it would tempting to conclude that Mr.

N's arithmetic abilities are as good as gone, as is most of his competence for lan-

guage. Yet several observations contradict this hypothesis. First is Mr. N's strange

reading behavior. When I make him see the digit 5 for an extended period of

time, he manages to tell me that it is a digit, not a letter. Then he starts counting

on his fingers—"one, two, three, four, five, it's a five!" Obviously he must still

recognize the shape of the digit 5 in order to count up to the appropriate numer-

al. But why can't he then immediately utter it? When I ask him how old his

daughter is, he behaves similarly. Unable to access the word "seven" instantly, he

covertly counts up to this numeral. He appears to know right from the start what
quantities he wishes to express, but reciting the number series seems to be his
only means of retrieving the corresponding word.

In passing, I notice a similar phenomenon when Mr. N attempts to read words

aloud. He often gropes around for the appropriate meaning without finding the

right word. While unable to read the handwritten word ham, he manages to tell
me, "It's some kind of meat." The word smoke is equally unreadable but evokes a

sense of "having a fire, burning something." He confidently reads the word school
as "classroom." The direct pathway that enables any of us to move straight from
the sight of digit 5 to its pronunciation "five," or from the letters h-a-m to the
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sound "ham," seems to have vanished from Mr. N's mind. Nevertheless, in one

way or another the meaning of these printed characters is not totally lost for him,

and he clumsily attempts to express it using circumlocutions.
Following up this lead, I next show Mr. N a pair of digits, 8 and 7. It would

take him several seconds to "read" them by counting on his fingers. Yet in a twin-

kling he readily points out that 8 is the larger digit. Much the same occurs with
two-digit numerals, which he experiences no difficulty in classifying as larger or

smaller than 55. Mr. N obviously remembers the quantity represented by each
Arabic numeral. His only errors occur when the quantities are similar, like 53 and

55. It is as if he only knows their approximate magnitude. He also manages to

place two-digit numerals at their approximate location on a vertical line labeled 1
at the bottom and 100 at the top, which is presented to him as a thermometer.
His responses, however, are far from being digitally accurate. He places 10 at the

lower quarter, while 75 lands much too close to 100. Operating finer classifica-
tions is impossible to him. Deciding whether a number is odd or even, in particu-
lar, widely exceeds his capacities.

In experiment after experiment, a striking regularity emerges: Though Mr. N
has lost his exact calculation abilities, he can still approximate. Every task that
calls only for an approximate perception of numerical quantities poses no diffi-

culty for him. On the one hand, he easily judges whether a certain quantity is
roughly appropriate to a concrete situation—for example, nine children are in a

school: Is this too few, just right, or too many? On the other hand, he has obvi-
ously lost all precise memory for numbers. He judges that a year comprises

"about 350 days" and an hour "about fifty minutes." According to him, a year has
five seasons, a quarter of an hour is "ten minutes," January has "fifteen or twenty
days," and a dozen eggs make for about "six or ten eggs"—responses that are
both clearly false and yet not that far from the truth. Even his immediate memo-
ry has not been spared. When I flash the digits 6, 7, and 8 at him, a second later he

cannot remember if he has seen a 5 or a 9. Yet he is quite confident that neither 3
nor 1 were among the initial set because he quickly realizes that these numbers
represent too small a quantity.

The dissociation between exact and approximate knowledge is nowhere more
apparent than in addition. Mr. N does not know how to add 2+2. His random

responses 3, 4, or 5 testify to his profound acalculia. Yet he never offers a result as
absurd as 9. Likewise, when presented with a slightly wrong addition, such as
5+7=11, he judges it to be correct more than half of the time, thus confirming
that he cannot compute its exact result. Yet he can rapidly reject with total confi-
dence and complete success a grossly false answer such as 5+7=19. He apparently
still knows its approximate results and he quickly detects that the proposed quan-
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tity, 19, departs from it by a lot. Interestingly, the larger a quantity, the fuzzier it
seems to be in Mr. N's mind. Thus he rejects 4+5=3 but accepts 14+15=23.
Multiplication problems, however, seem to exceed the scope of his approxima-
tion abilities. He answers them in a seemingly random fashion, even accepting as
correct an operation as absurd as 3x3=96.

In a nutshell, Mr. N suffers from a peculiar affliction: He is unable to go
beyond approximation. His arithmetic life is confined to a strange, fuzzy universe
in which numbers fail to refer to precise quantities and have only approximate
meanings. His torments refute the cliche of the unfailing precision of mathemat-
ics, so elegantly expressed by the French writer Stendhal: "I used to love, and still
love, mathematics for themselves as a domain that does not admit hypocrisy and
vagueness, my two pet aversions."

With all due respect to Stendhal, vagueness is an integral part of mathematics
—so central, in fact, that one may lose all exact knowledge of numbers and yet
maintain a "pure intuition" of numerical quantities. Wittgenstein was closer to
the truth when he maliciously observed that 2+2=5 is a reasonable error. But if an
individual asserts that 2+2 make 97, then this cannot just be a mistake: this person
must be operating with a logic totally different from our own.

In earlier chapters, I drew a distinction between two categories of arithmetic
skills: the elementary quantitative abilities that we share with organisms devoid
of language, such as rats, apes, and human babies; and the advanced arithmetic
abilities that rest on symbolic notations of numbers and on the strenuous acquisi-
tion of exact calculation algorithms. Mr. N's case suggests that those two cate-
gories rely on partially separate cerebral systems. One can be abolished while the
other remains intact.

It would obviously be absurd and reductive to equate patient N's performance
with that of Sheba, Sarah Boysen's gifted chimpanzee whom I described in the
first chapter. For all his handicaps, Mr. N remains a full-fledged Homo sapiens. In
arithmetic, however, his cerebral lesion has thrown him back to a rudimentary
level of competence. Like Sheba, Mr. N can go from a numerical symbol to the
corresponding quantity—although his repertoire of symbols is evidently much
larger than the chimp's. Like her, he is also able to select the larger of two quanti-
ties and to compute an approximate addition. That these operations remain
accessible to an aphasic and acalculic patient with a drastically impaired left hemi-
sphere confirms that they do not depend much on linguistic abilities. Exact calcu-
lation, on the other hand, calls for the integrity of neuronal circuits specific to the
human species and localized at least in part in the left hemisphere. This is 'why
Mr. N, with his extended left-hemispheric lesion, can neither read numbers aloud,
nor multiply them, nor judge whether they are odd or even.
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A Clear-Cut Deficit

Mr. N's case does not allow for very strong conclusions about the cerebral local-
ization of numerical approximation. Given the extent of his lesion in the left
hemisphere, his residual abilities may well rest on intact areas of the right hemi-
sphere. However, the possibility remains that part of his left hemisphere has
remained functional enough to allow for number comparison and approxima-
tion, if not exact calculation.

Other neurological pathologies are better suited to pinpointing the arithmetic
abilities of each hemisphere. The corpus callosum is a massive bundle of nerve
fibers that connects the two hemispheres and that serves as the main pathway for
communicating information between them. Occasionally, this bundle can be dis-
connected. Sometimes it is partially interrupted by a focal brain lesion. More fre-
quently, it is purposely severed surgically in an effort to control severe epilepsy in
patients not amenable to any other form of treatment. In either case the result is
a human being with a cortex divided in two, or a split-brain patient. The two cere-
bral hemispheres remain in full working order, but it is now practically impossi-
ble for them to exchange any information.

In everyday life, these patients appear deceptively sound in body and mind.
Their behavior seems entirely normal—except for very rare episodes where their
left hand undoes what their right hand is doing. A simple neurological examina-
tion, however, suffices to reveal clearcut deficits. If the patients close their eyes
and a familiar object is placed in their left hand, they are unable to name it,
though they can demonstrate its use through gestures. Likewise, if a picture is
flashed within their left visual field, they swear that they haven't seen anything,
but their left hand manages to select the appropriate picture among many others.

This odd behavior can easily be accounted for. The major neuronal projection
pathways that connect the external sense organs to primary sensory cortices are
crossed, so that a tactile or visual stimulation from the left side is initially
processed by the sensory areas of the right hemisphere. Thus, when an object is
placed in the left hand, the right hemisphere is fully informed of the identity of
the stimulus and can retrieve its shape and function. Yet in the absence of the cor-
pus callosum, this information cannot be transmitted to the left hemisphere. In
particular, the cerebral areas that control language production, whose lateraliza-
tion to the left hemisphere has been known since the work of Broca in the last
century, are given no indication of what the right hemisphere feels or sees. The
left-hemispheric language network thus denies having seen anything. If it is com-
pelled to provide an answer, it selects a response at random or borrows it from
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previous trials. That was the case in my testing of a patient who, while blindfold-

ed, had just named a hammer placed in her right hand. When I placed a

corkscrew in her left hand, she immediately said "another hammer"—all the

while her left hand mimicked unscrewing a bottle.

Patients with a severed corpus callosum are a gold mine for neuropsycholo-

gists because they allow for a systematic assessment of the cognitive abilities

available in each hemisphere. Suppose that one asks a split-brain patient to multi-

ply a digit by 2 and point at the appropriate result placed among several other

numbers. By presenting the digit visually either to the right or to the left of the

patient's gaze, and by flashing it so briefly that it is gone before the eyes have had

time to move, one can ensure that the input remains confined to a single hemi-

sphere. Using this trick, it becomes possible to assess whether either hemisphere

can identify numbers, multiply them by 2, or allow the patient to point toward a

given number.

Let us start with the simplest operation: identifying digits. Flash two digits on a

screen and ask a split-brain patient whether they are identical or different. When

one digit appears to the right and the other to the left, even this simple same-dif-

ferent judgment is not feasible. The patient responds at random, sometimes decid-

ing that 2 and 2 are different, and sometimes that 2 and 7 are identical. The

severance of interhemispheric connections makes comparing the digits on the left

and right impossible. This is so even if each hemisphere, on its own, can identify

them. Indeed, when the two digits appear in the same visual field, either both on

the right or both on the left, the patient responds with almost perfect accuracy.

The two hemispheres do not stop at recognizing digit shapes. They can also

interpret them as referring to a certain quantity. To prove this, one can present a

digit together with a set of dots rather than a pair of digits. When both the digit

and the dot pattern appear in the same visual field, the patient easily determines

whether they match. Thus, each hemisphere knows that 3 and .'. represent one

and the same number.

Both hemispheres also appreciate the ordinal relation between numbers.

Whether a digit is presented to the right or to the left, split-brain patients can
quickly decide whether it is smaller or larger than some reference number. And
when a pair of digits is flashed, they can point toward the larger (or toward the

smaller). Comparison merely seems to be a bit slower and less accurate in the
right hemisphere than in the left, but the difference is small. Hence, each hemi-

sphere appears to host a representation of numerical quantities and a procedure
for comparing them.

But this similarity of the two hemispheres vanishes when one tackles the
issue of language and mental calculation. These functions are the left hemi-
sphere's indisputable privilege. Using the same experimental procedures as just
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described, the right hemisphere appears unable to identify written numerals. Its
visual abilities include the recognition of simple shapes such as the digit 6, but
not of alphabetical stimuli such as six. In most people, the right hemisphere is
also mute: It cannot produce most words aloud. Thus, if one flashes the digit 6
on the left-hand side of a computer screen, the vast majority of split-brain
patients behave exactly as Mr. N would: They cannot name the digit, although
they can indicate with the left hand that this number is larger than 5.

Some particularly ingenious patients manage to circumvent their right hemi-
sphere's incapacity to produce speech. For instance, Michael Gazzaniga and
Steven Hillyard have studied a patient called L. B. who, after several seconds,
managed to name digits presented to his right hemisphere. Unlike a normal per-
son, his naming time increased linearly with digit size: it took him two seconds to
name digit 2, but almost five seconds to name digit 8. Like Mr. N, L. B. appeared
to recite the number sequence slowly and covertly until he had reached a numer-
al that "stuck out"—those were his own words—and which he then uttered
aloud. Nobody knows exactly how the right hemisphere managed to signal that
the number it had seen had been reached. It might have been some kind of hand
movement, a contraction of the face, or some other cueing artifice that split-
brain patients often devise for themselves. Anyhow, the very fact that the patient
resorted to counting in order to name digits presented in the left visual field indi-
cates that his right hemisphere was devoid of normal speech production abilities.

The right hemisphere is also ignorant of mental arithmetic. When an Arabic
digit is presented in the right visual field and therefore contacts the left hemi-
sphere, the patient experiences no apparent difficulty adding 4 to it, subtracting 2
from it, multiplying it by 3, or dividing it by 2. Such calculations, however simple,
are strictly impossible when the digit appears on the left side and is therefore
processed by the right hemisphere. This profound calculation deficit persists even
when the patient is asked to point toward the result rather than say it.

Though the right hemisphere is worthless for exact calculation, can it never-
theless approximate? To assess this possibility, my colleague Laurent Cohen and I
asked a patient with partially disconnected hemispheres to verify visually present-
ed addition problems. Even when the operation was as obviously wrong as 2+2=9,
when it was perceived by the right hemisphere the patient seemed to respond
randomly and judged it to be correct on about half of the trials. During one
series of trials, however, she suddenly had a run of fifteen correct responses out
of sixteen. The probability that such an event could occur by chance is less than 1
in 4,000.1 therefore believe that her right hemisphere could estimate simple addi-
tions, but managed to express this competence only during this single block of
sixteen trials. Indeed, it is not enough for the right hemisphere to possess a cer-
tain ability; it must also understand the experimenter's instructions and be given
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Figure 7.1. Despite the loss of his left hemisphere during combat

in Vietnam, patient J.S. can still identify and compare Arabic

numerals. Exact calculation, however, poses him extreme difficul-

ties. (Reprinted from Grafman etal. 1989 by permission of the

publisher.)

a chance to respond before the left hemisphere takes over.

Jordan Grafman and his colleagues have studied another patient who brings
further support to the hypothesis that the right hemisphere is good only at very
elementary calculations. A young American soldier, J. S., lost most of his left skull

and underlying cortex at the age of 22 during combat in Vietnam (Figure 7.1).
Somehow, J. S. survived the many surgical operations, repetitive infections, and

severe epilepsy that ensued. He now lives a semi-independent life with a single

right hemisphere (in the left hemisphere, only the occipital lobe is spared). As can
be expected, J. S. is profoundly impaired in spoken language comprehension and
production. He can neither read nor write, and he cannot name any object—
deficits that coincide exactly with the known limitations of the isolated right
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hemisphere in patients with a severed corpus callosum. His results on tests of

number processing are also in keeping with those of other split-brain studies. J. S.

recognizes Arabic numerals and knows how to compare them and estimate the

numerosity of a set of objects. He occasionally reads aloud a few digits and some
two-digit numbers. He can solve only about half of the single-digit addition and
subtraction problems set to him. Multiplication, division, and multidigit calcula-

tion constitute an insurmountable challenge for him.

A Champion in Numerical Non-sense

The split-brain patients we have seen, together with patient J. S., indicate that
although only the left hemisphere can perform exact calculation, both the left

and the right hemispheres incorporate representations of numerical quantities.
Can the brain areas implicated in this quantitative representation be localized? Is
the mental number line associated with a specific cerebral circuit that occupies a

precise cortical location? And what would our mental life be like if a brain lesion
made us lose our number sense? To answer these questions, I turn to patients
with smaller lesions that affect a more specific piece of brain circuitry.

When the famous writer Eugene lonesco was working on his masterpiece
The Lesson, he probably had few pretensions other than a love of humor and non-
sense. Yet in this play, he unknowingly sketched a remarkably realistic portrait of

an acalculic patient devoid of any quantitative intuition:

PROFESSOR: Let us arithmetize a little now.... How much are one and one?
PUPIL: One and one make two.

PROFESSOR: marveling at the Pupil's knowledge: Oh, but that's very good. You
appear to me to be well along in your studies. You should easily achieve the
total doctorate, miss.... Let's push on: how much are two and one?

PUPIL: Three.
PROFESSOR: Three and one?
PUPIL: Four.
PROFESSOR: Four and one?
PUPIL: Five....
PROFESSOR: Magnificent. You are magnificent. You are exquisite. I congratulate

you warmly, miss. There's scarcely any point in going on. At addition you are
a past master. Now, let's look at subtraction. Tell me, if you are not exhausted,
how many are four minus three?

PUPIL: Four minus three? . . . Four minus three?
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PROFESSOR: Yes. I mean to say: subtract three from four.
PUPIL: That makes ... seven?

PROFESSOR: I am sorry but I'm obliged to contradict you. Four minus three does

not make seven. You are confused: four plus three makes seven, four minus
three does not make seven ... This is not addition anymore, we must subtract
now.

PUPIL, trying to understand: Yes ... yes ...
PROFESSOR: Four minus three makes ... How many?.. . How many?...

PUPIL: Four?
PROFESSOR: No, miss, that's not it.

PUPIL: Three, then.
PROFESSOR: Not that either, miss ... Pardon, I'm sorry ... I ought to say, that's

not i t . . . excuse me.

PUPIL: Four minus three ... Four minus three ... Four minus three?... But now
doesn't that make ten? . . .

PROFESSOR: Count then, if you will, please.

PUPIL: One ... two ... and after two, comes three ... then four ...
PROFESSOR: Stop there, miss. Which number is larger? Three or four?
PUPIL: Uh ... Three or four? Which is the larger? The larger of three or four? In

what sense larger?
PROFESSOR: Some numbers are smaller and others are larger. In the larger num-

bers there are more units than in the small....
PUPIL: Excuse me, Professor ... What do you mean by the larger number? Is it

the one that is not so small as the other?
PROFESSOR: That's it, miss, perfect. You have understood me very well.

PUPIL: Then, it is four.
PROFESSOR: What is four—larger or smaller than three?
PUPIL: Smaller ... no, larger.
PROFESSOR: Excellent answer. How many units are there between three and four?

... Or between four and three, if you prefer?
PUPIL: There aren't any units, Professor, between three and four. Four comes

immediately after three; there is nothing at all between three and four! ...
PROFESSOR: Look here. Here are three matches. And here is another one, that

makes four. Now watch carefully—we have four matches, I take one away,
now how many are left?

PUPIL: Five. If three and one make four, four and one make five.*

*Source: E. lonesco, The Lesson, (translated by Donald M. Allen). English translation copyright

©1958 by Grove Press Inc. Used by permission of Grove/Atlantic Inc.
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Did lonesco ever visit a neurology clinic? The Lessons pupil is not an imagi-
nary character, but someone whom I have met in person. For several hours, I
attempted to teach arithmetic to Mr. M, a sixty-eight-year-old acalculic patient
with a lesion of the inferior parietal cortex (Figure 7.2). Like lonesco's pupil, this
person could still solve simple additions, but he was totally unable to subtract and
had trouble determining the larger of two digits. lonesco's dialogue rings so true
that it could almost be a verbatim transcription of my surrealistic conversations
with Mr. M. In the professor's lines I recognize my own clumsy attempts at teach-
ing Mr. M elementary arithmetic; my disproportionate encouragement when he
succeeded; and my barely concealed discouragement in front of his recurring fail-
ures. In the pupil's words, I can almost hear my patient's confusion as he tried,
with an unfailing willingness, to answer questions that he no longer understood.
Even the play's subtitle—"a comical drama"—fits to a T Mr. M's unfortunate
predicament, a genuine case of numerical nonsense.

Figure 7.2. This lesion of the right inferior parietal cortex caused Mr. M to lose his sense of

numerical quantities. (Note that a confusing neurological convention makes the right-hemisphere

lesion appear on the left of horizontal sections.) (From Dehaene and Cohen, 1996.)
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Mr. M's impairment is in fact typical of patients who suffer from a selective

deficit of the quantitative representation of numbers, the mental number line

that gives meaning to Arabic numerals and number words. Mr. M has essentially

lost every intuition about arithmetic. This is why he is unable to compute four

minus three or even to figure out what this subtraction might mean. Never-

theless, because his other cerebral circuits remain intact, he can still perform rou-

tine symbolic calculations, while at the same time failing to understand them.

Let us consider Mr. M's dissociated abilities one at a time. Mr. M speaks quite

fluently and can read words and numbers to perfection. He initially suffered from

some difficulty with writing, but this handicap has long since receded. His mod-

ules for identifying words, both visually and auditorily, and for speaking or writ-

ing them must therefore be intact, as are the bundles of connections that connect

them. In passing, Mr. M's case forcefully suggests that there are direct pathways

in the human brain for transforming numerals from one notation to the other—

networks capable of turning 2 into two without caring about the meaning of the

symbols.

Indeed, Mr. M does not understand the numbers he reads so well. In a task of

number comparison that calls for pointing to the larger of two Arabic numerals,

he fails once in every six trials. His errors, though relatively infrequent, are gross.

For instance, he once maintained, without blinking, that 5 was larger than 6. In a

test of number proximity, which consists of deciding which of two numbers is

closer to a third, he also fails once in every five trials.

His handicap is most flagrant in subtraction and in number bisection tests.

The bisection test consists in deciding which number falls exactly in the middle of

a given interval. Mr. M's responses verge on complete nonsense. Between 3 and

5, he places 3, then 2; between 10 and 20, he places 30, only to later correct his

answer to 25 with this telling apology: "I do not visualize numbers very well."

A similar confusion reigns over subtraction. He fails to solve about three sub-

traction problems out of four. And indeed, his mistakes have an eerie resem-

blance to those of lonesco's pupil. Two minus one makes two, he affirms. Nine

minus eight is seven "because there is one unit." Three minus one "makes four,
no there is one unit, a modification of one unit makes three, doesn't it?" For six

minus three, he writes down nine, but comments in a rare moment of lucidity: "I
am adding when I should be subtracting. Subtracting means taking away; adding
means summing up." This knowledge, however, is nothing more than a theoreti-

cal veneer. Mr. M has lost all sense of the structure of integers and of which oper-

ations are required to move from one quantity to another.
In The Lesson, the pupil who cannot subtract three from four suddenly turns

out to be a calculating prodigy:
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PROFESSOR: How much, for example, are three billion seven hundred fifty-five

million nine hundred ninety-eight thousand two hundred fifty one, multiplied

by five billion one hundred sixty-two million three hundred and three thou-
sand five hundred and eight?

PUPIL, very quickly: That makes nineteen quintillion three hundred ninety
quadrillion two trillion eight hundred forty-four billion two hundred nineteen
million one hundred sixty-four thousand five hundred and eight....

PROFESSOR, stupefied: But how did you know that, if you don't know the princi-

ples of arithmetical reasoning?
PUPIL: It's easy. Not being able to rely on my reasoning, I've memorized all the

products of all possible multiplications.

All things considered, Mr. M exhibits a similar, though necessarily less spectac-
ular, dissociation. He who confidently asserts that 3-2=2 still knows most of the

multiplication table by heart. His rote verbal memory is intact and allows him to
blurt out "three times nine is twenty-seven" like an automaton, without under-
standing what he is saying. He also appeals to this intact memory in order to
solve more than half of the one-digit addition problems posed to him. He fails,
however, whenever the result of an addition goes beyond ten. The strategy used

by most adults, which consists in decomposing, say, 8+5 into (8+2)+3, is out of his
reach. Mr. M's arithmetic knowledge starts to dwindle at the point where his rote

memory stops. His inferior parietal lesion prevents him from having recourse to
the number sense when his memory fails.

Inferior Parietal Cortex and the Number Sense

The inferior parietal area, which is the seat of Mr. M.'s lesion, remains a terra
incognita of the human brain. This cortical area, particularly its posterior convolu-
tion called the "angular gyrus" or "Brodmann's area 39," plays a crucial role in

the mental representation of numbers as quantities. It might well be the deposi-
tory of the "number sense" to which this book is dedicated, an intuition of quan-
tities present ever since the dawn of humankind. Anatomically, it lies in what
neuroscientists used to call the high-level plurimodal association cortex. The neu-
rologist Norman Geschwind called it an "association area of association areas."
Its neural connections indeed place it at the convergence of highly processed data
streams stemming from vision, audition, and touch—an ideal location for arith-
metic because the number concept applies equally well to all sensory modalities.
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Almost sixty years have elapsed since the German neurologist J. Gerstmann

first described the tetrad of deficits that a lesion of the left inferior parietal region

can cause: acalculia, needless to say, but also difficulties in writing, in representing

the fingers of the hand, and in distinguishing left from right. Immediately after

his vascular accident, Mr. M exhibited all these deficits. There was, however, one

additional complication: Mr. M's lesion was located in the right hemisphere. We

believe that this patient, who was strongly left-handed, fell into a minority of peo-

ple whose brain is organized in a mirror image of its normal architecture and

whose right hemisphere is involved in language processing rather than the left.

But the loss of quantitative number sense can also be found in more classical

patients whose Gerstmann's syndrome stems from a left inferior parietal lesion.

What is the relationship between numbers, writing, fingers, and space? This

issue is a matter of considerable debate. The tetrad of deficits called Gerstmann's

syndrome may not mean much. It could merely reflect the clustering of an odd

assortment of independent cerebral modules in the same cortical neighborhood.

Indeed, researchers have observed for decades that the four elements making up

the syndrome, though frequently found together, can also be dissociated. Some

relatively uncommon patients show isolated acalculia with no apparent impair-

ment in distinguishing their fingers, or vice versa. Hence, the inferior parietal

region is probably subdivided into microregions highly specialized for numbers,

for writing, for space, and for the fingers.
It is nevertheless tempting to look for a deeper explanation for this grouping

within the same general brain region. After all, as we saw in previous chapters,

the association between numbers and space is indisputably close. In Chapter 1,

we saw that numerosity can be extracted from a spatial representation of sets of

items, provided this map specifies the presence of objects regardless of their size

and identity. In Chapter 3, the mental representation of integers on a left-to-right

oriented number line turned out to play a central role in numerical intuition. In

Chapter 6, finally, tight relationships were found between mathematical talent

and spatial abilities. Little wonder, then, if we find that a lesion can simultaneous-

ly destroy mental representations of space and of numbers.
My feeling is that the inferior parietal region hosts neural circuitry dedicated

to the representation of continuous spatial information, which turns out to be
ideally suited to the coding of the number line. Anatomically, this area stands at

the top of a pyramid of occipitoparietal areas that construct increasingly abstract
maps of the spatial layout of objects in the environment. Number emerges natu-
rally as the most abstract representation of the permanence of objects in space—
in fact, we can almost define number as the only parameter that remains constant
when one removes object identity and trajectory.
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The links between numbers and fingers are also obvious. All children in all
cultures learn to count on their fingers. It thus seems plausible that in the course
of development, the cortical representations of fingers and of numbers come to
occupy neighboring or tightly interrelated cerebral territories. Furthermore, the
cerebral representations of numbers and the layout of the hand, even if they are
dissociable, obey very similar principles of organization. When Mr. M wiggles his
index finger even though I have asked him to move his middle finger, his error
seems to be the exact analogue of his inability to visualize the respective locations
of numbers 2 and 3 on the number line. From this perspective, which remains
highly speculative, body maps, spatial maps, and the number line would all result
from a single structural principle governing the connectivity in the inferior pari-
etal cortex.

Seizures Induced by Mathematics

Another enigmatic pathology demonstrates the extent to which the inferior pari-
etal area is specialized for arithmetic. Epilepsia arithmetices is a syndrome first
reported in 1962 by the neurologists D. Ingvar and G. Nyman. During a routine
electroencephalographical examination of an epileptic girl, they discovered that
whenever their patient solved arithmetic problems, even very simple ones, her
brain waves showed rhythmic discharges. Calculation triggered epileptic fits,
while other intellectual activities such as reading had no effect.

Nimal Senanayake, a Sri Lankan physician, paints a fascinating and terrifying
portrait of these "seizures induced by thinking":

A 16-year-old school girl had been experiencing sudden jerky movements of
her right arm during the past year, accompanied by transient thought block
when studying; in particular, when studying mathematics. During the term
test, she began to develop jerks about 30 minutes after starting the mathemat-
ics paper. The pen dropped out of her hand and she found it difficult to con-
centrate. She completed the 1-hour paper with difficulty but during paper 2
the jerks became more pronounced and in 45 minutes she had a grand mal
convulsion and lost consciousness. [Following anti-epileptic medication,]
there was some improvement but she continued to have occasional jerks dur-
ing mathematics lessons. About 9 months after the first major seizure she had
to sit the main examination. Again, during the mathematics paper, she started
to jerk within 15 minutes. She forced herself to continue, but halfway through
the paper she had a grand mal convulsion.
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More than a dozen similar cases of "arithmetic epilepsy" are now known

throughout the world. The victims' electro-encephalogram frequently presents

anomalies in the inferior parietal region. Most likely this area houses an incorrect-

ly wired and hyperexcitable network of neurons that, when put to use during

arithmetic problem solving, transmits an uncontrollable electrical discharge to

other brain areas. That this epileptic focus only breaks out during calculation gives

an indication of the extreme specialization of this cerebral area for arithmetic.

The Multiple Meanings of Numbers

Mr. M's case also provides ample proof of the amazing specialization of the infe-

rior parietal area. Though his parietal lesion has devastated his number sense, Mr.

M maintains an excellent knowledge of nonnumerical domains. Most strikingly,

although he cannot tell which number falls between 3 and 5, the very same bisec-

tion task applied to other areas does not give him any difficulty. Pie knows very

well which letter falls between A and C, which day comes between Tuesday and

Thursday, which month falls between June and August, and which musical note is

found between do and mi. Knowledge of these series is fully intact. Only the

series of numbers—the only one that refers to quantity—seems to be affected.

Even with regard to numbers, Mr. M has not lost his wealthy store of "ency-

clopedic" knowledge. This talented artist, now retired, can still lecture for hours

on the events of 1789 or 1815. He has even told me, with a wealth of numerical

detail, the history of the Hopital de la Salpetriere where I test him. Number 5,

which he so readily judges to be greater than 6, evokes in him a profusion of mys-

tical references to the "five pillars of Islam." He reminds me that odd numbers,

according to the Pythagoreans, were the only ones that found favor in the gods'

eyes. And the patient humorously refers me to a whimsical quote by the French

humorist Alphonse Allais: "Number 2 rejoices in being so odd." No doubt, then,

Mr. M's erudition has survived brain damage, even in regard to dates and the his-
tory of numbers and mathematics.

Another dimension of Mr. M's impairment is that it varies according to the

abstractness or concreteness of the problems he is asked to solve. The numbers

that are manipulated in arithmetic are highly abstract concepts. When solving

8+4, there is no point in wondering whether one is talking about eight apples or
eight children. Mr. M's handicap seems confined to this understanding of num-
bers as abstract magnitudes. His numerical performance improves considerably

whenever he finds a concrete referent or mental model to cling to, rather than
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having to work with numbers in the abstract. For instance, he can still estimate

unfamiliar but concrete magnitudes such as the duration of Columbus's trip to

the New World, the distance from Marseilles to Paris, or the number of specta-
tors at a major football game. During one examination, he failed to divide 4 by 2

(he mechanically responded, "Four times three is twelve"). Attempting to under-
stand the source of his failure, I placed four marbles in his hand and asked him to
share them between two children. He immediately divided this concrete set by
grabbing two marbles in each hand without even a shadow of indecision.

Later on I questioned him about his daily schedule and found that he judi-

ciously uses time labels. Mr. M easily explained how he got up at five in the morn-
ing and then had two hours of work before breakfast, which was served at seven,

and so on. Moving mentally on the concrete line of time was a breeze for him
compared to dwelling on the abstract number line. Remarkably, he was able to

perform computations with time labels that he was completely unable to per-
form in the abstract. For instance, he could tell me how much time elapsed, say,
between 9 a.m. and 11 a.m.—an operation equivalent to subtraction, which he
had so much difficulty with. One peculiarity of the French system of time is that

we use both a twelve-hour format and a twenty-four-hour format for time—for
instance, we say that 8 p.m. is literally "20 o'clock." Mr. M experienced no diffi-
culty at all converting back and forth between these two formats, although such a
conversion is formally equivalent to adding and subtracting 12. As expected, he

experienced a bitter setback when I presented him numerically equivalent opera-
tions such as 8+12 in the abstract context of an arithmetic test.

These dissociations illustrate how useless it would be to seek the brain area for
number meaning. Numbers have multiple meanings. Some "random" numbers
such as 3,871 refer only to a single concept, the pure quantity that they convey.

Many others, however, especially when they are small, evoke a host of other
ideas: dates (1492), hours (9:45 p.m.), time constants (365), commercial brands
(747), zip codes (90210, 10025), phone numbers (911), physical magnitudes
(110/220), mathematical constants (3.14 .. . ; 2.718 .. . ), movies (2001), games
(21), and even drinking laws (21 again!). The inferior parietal cortex seems to

encode only the quantitative meaning of numbers, which is what Mr. M has trou-
ble with. Distinct brain areas must be involved in coding the other meanings.

In Mr. G, another patient with massive damage to the left hemisphere, the
contribution of these parallel pathways for number meaning is particularly evi-
dent. Mr. G suffers from a major reading deficit. The direct reading pathway that
converts written letters or digits into the corresponding sounds is totally disrupt-
ed, preventing him from reading most words and numbers. Yet some strings still
evoke fragments of meaning:
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• 1789: It makes me think of the takeover of the Bastille ... but what?
• Tomato: It's red ... one eats it at the beginning of a meal. . .

Sometimes this semantic approach allows him to recover the pronunciation of
a word in a very indirect way:

• 504 [a famous model of Peugeot car]: The number of the cars that win ... it
was my first car ... it begins with a P ... Peugeot, Renault... it's Peugeot
... 403 [another Peugeot!] ... no 500 ... 504!

• Candle: One lights it to light up a room ... Candle!

On other occasions, conversely, the retrieved meaning leads him astray:

• 1918: the end of World War I . . . 1940
• Giraffe: zebra

Though pure quantities can reasonably be related to inferior parietal cortex,
nobody knows yet which cerebral areas take on the other nonquantitative mean-
ings of numbers. Among the many unsolved issues that the cognitive and neural
sciences will have to address in the next ten or twenty years, this one certainly
stands out: According to what rules does our brain endow a linguistic symbol
with meaning?

The Brain's Numerical Information Highways

The meaning of numbers is not the only knowledge that is distributed among
several brain regions. Think of all the arithmetic know-how you command: read-
ing and writing numbers, in Arabic or in spelled-out notation; understanding
them and producing them aloud; addition, multiplication, subtraction, division—
and the list can go on. The study of cerebral lesions suggests that each of these
abilities rests on a swarm of highly specialized neuronal networks communicat-
ing through multiple parallel pathways. In the human brain, division of labor is
not an idle concept. Depending on the task that we plan to accomplish, the num-
bers that we manipulate go down different "cerebral information highways." A
small part of these networks is tentatively schematized in Figure 7.3.

Consider reading. Do we use the same neuronal circuits to identify the Arabic
digit 5 and the word five'? Probably not. Visual identification as a whole rests on
cerebral areas in the posterior part of both hemispheres, in a region called the
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Figure 7.3. A partial and still hypothetical diagram of cerebral areas involved in number process-

ing. Both hemispheres can manipulate Arabic numerals and numerical quantities, but only the left

hemisphere has access to a linguistic representation of numerals and to a verbal memory of arith-

metic tables. (After Dehaene and Cohen 1995.)

inferior occipito-temporal cortex. However, this region is highly fragmented into
specialized subsystems. The study of split-brain patients indicates that the visual
system of the left hemisphere recognizes both Arabic numerals and spelled-out
words, while that of the right hemisphere recognizes only simple Arabic numer-
als. Furthermore, even within the posterior left hemisphere, different categories
of visual objects—words, Arabic digits, but also faces and objects—seem to be
processed by dedicated neuronal pathways. Hence, certain lesions of the left
occipito-temporal region impair only the visual identification of words. These
patients suffer from a syndrome called "pure alexia" or "alexia without agraphia."
Alexia means that they cannot read a word (though they understand spoken lan-
guage perfectly); without agraphia means that they can still write words and sen-
tences—though they are totally unable to read their own writing only seconds
after having written. Here is a typical transcript of a pure alexic patient attempt-
ing to read the word girl:

PATIENT: That's 'on' .. . that's 'O, N' .. . 'on' ... is that what it is? Well there's
three letters, like an 'E, B' ... I don't know what that says ... I can't see it that
well. . . I have to give up, I can't.

EXAMINER: Try to read the letters one by one.
PATIENT: These? It's ... 'B' ... 'N' ... T ... I don't know.
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Though incapable of identifying words, such patients often maintain excellent

face and object recognition abilities. Thus, visual identification is not impaired as

a whole. Instead, only a subsystem specialized for strings of characters goes awry.

Most important for our present purposes, even the identification of Arabic digits

is frequently preserved. One of the first diagnosed cases of pure alexia, reported

by the French neurologist Jules Dejerine in 1892, involved a man who could not

decipher words nor, oddly enough, musical notation, but was still able to read

Arabic digits and numerals and even carry out long series of written calculations.

In 1973, the American neurologist Samuel Greenblatt described a similar case in

which, in addition, the patient still had fully intact visual fields and color vision.

The converse dissociation is also on record. Lisa Cipolotti and her colleagues

at the National Hospital in London recently observed a deficit in reading Arabic

numerals in a patient who experienced no difficulty reading words. Such cases

imply that word and number identification rest on distinct neuronal circuits in

the human visual system. Because they lie in neighboring anatomical areas, they

frequently deteriorate simultaneously. In some rare cases, however, we can

demonstrate that they are in fact distinct and dissociable.

Similar patterns of dissociation are found between writing down numbers and

saying them aloud. Patient H. Y, whom I described briefly at the beginning of this

chapter, mixed up number words when he had to say them aloud. Yet he experi-

enced no difficulty in writing them in Arabic notation. Thus he might say that

"two times five is thirteen," but he always wrote down 2x5=10 correctly. He clearly

had preserved a memory for multiplication tables. He failed only when he tried to

retrieve the pronunciation of the result. Frank Benson and Martha Denckla simi-

larly described a patient who, when solving 4+5, said eight and wrote down 5—yet

could still point to the correct result, 9, among several other digits! This patient's

cerebral routines for the spoken and written production of numerals were both

deteriorated, yet visual identification and calculation remained unaffected.

The extraordinary selectivity of cerebral lesions seems perpetually to catch us

off guard. Patrick Verstichel, Laurent Cohen, and I studied a patient who, when

trying to speak, emits an incomprehensible jargon ("I margled the tarboneek
placidulagofalty stoch ... "). A careful analysis of errors shows that a specific

stage of speech production, which assembles the phonemes making up the pro-
nunciation of words, is irremediably impaired. Yet number words somehow

escape this jargon. When the patient tries to say a numeral, say twenty-two, he

never produces muddled speech like "bendly daw." Like H. Y, however, he occa-
sionally substitutes one number word for another and says/t/ty-two (such whole-
word substitutions rarely, if ever, occur with "words other than numerals). Thus,
even deep down within the stream of cerebral areas for speech production, spe-
cialized neuronal circuits deal with the assembling of numerals.
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Figure 7.4. Following a. small lesion of the leftpremotor cortex, this woman became unable to

read or write words, but could still read and write Arabic numerals. The scribbles reflect the

patient's attempt to write her name, the letters A and B, and the word dog. Sample calculations

show that her writing of Arabic numerals was fully spared. (Reprinted from Anderson et al. 1990;

copyright © 1990 by Oxford University Press.)

A very similar dissociation is found in writing. Steven Anderson and Antonio
and Hannah Damasio have described a patient who had suddenly become unable
to read or write after a minuscule lesion destroyed part of her left premotor cor-
tex. When she was asked to write down her name or the word dog, all she could
produce were illegible scrawls. Yet reading and writing of Arabic numerals re-
mained fully intact. The patient could still solve complex arithmetic problems in
the same neat handwriting that she had possessed before the lesion (Figure 7.4).
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An inescapable conclusion from this series of analogous cases is that at almost

all levels of processing—visual identification, language production, writing—the

cerebral areas that handle numerals are partially distinct from those that deal

with other words. Many of these areas are not shown on Figure 7.3, for the sim-

ple reason that we do not yet know much about their anatomical substrate. But

their dissociation following a cerebral lesion proves at least that they do exist.

Let us now talk about calculation. We have already described at length the

crucial role of the inferior parietal cortex in the quantitative processing of num-

bers and in particular in their subtraction. But what about addition and multipli-

cation tables? My colleague Laurent Cohen and I believe that another neuronal

circuit may be involved—a cortico-subcortical loop involving the basal ganglia of

the left hemisphere. The basal ganglia are neuronal nuclei located below the cor-

tex. They collect information from several cortical regions, process it, and send it

back through multiple parallel circuits passing through the thalamus. Although

the exact function of these cortico-subcortical loops remains poorly understood,

they are involved in the memorization and reproduction of automatic motor

sequences, including verbal sequences. Laurent Cohen and I think that one of

those circuits is activated during multiplication and automatically blurts out, say,

the result "ten" as a complement to the word sequence "two times five." More

precisely, the activity of a distributed population of neurons coding for the sen-

tence "two times five" activates neurons within circuits of the basal ganglia that,

in turn, light up a population of neurons coding for the word "ten" within corti-

cal language areas. Other verbal automatisms such as proverbs, poems, or prayers

may be stored in a similar fashion.

Our speculations are supported by several cases of acalculia stemming from a

left subcortical lesion. Damage to the deep neuronal pathways of the left hemi-
sphere, which leaves the cortex intact, occasionally causes arithmetic impair-

ments. I recently examined a patient, Mrs. B, whose left basal ganglia had been

damaged. In spite of this lesion, the patient can read numbers and write them to

dictation. Her circuits for identifying and producing numbers are fully intact. The

subcortical lesion has had a drastic impact on calculation, however. In fact, Mrs.
B's memory for arithmetic tables is so severely disorganized that she now makes
mistakes even on problems as simple as 2x3 or 4x4.

In sharp contrast with Mr. M, who had lost number sense, Mrs. B still shows

an excellent understanding of numerical quantities (her inferior parietal cortex

has been fully spared). She can compare two numbers, find which number falls in
between them, and even recalculate 2x3 by mentally counting three groups
of two objects. She also experiences no difficulty in solving simple subtractions

such as 3-lor 8-3. The narrow domain in which Mrs. B is impaired concerns
the retrieval of familiar word sequences from rote memory. She can no longer
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recall strings of words that once were highly familiar, such as "three times nine is

twenty-seven" or "two four six eight ten." In a memorable working session, I

asked Mrs. B to recite the multiplication table, the alphabet, some prayers, some
nursery rhymes, and some poems, and discovered that all of these forms of rote
verbal knowledge are impaired. Mrs B experiences profound deficiencies when
she recites Au dair de la lune, a nursery rhyme that is about as famous in France
as Twinkle twinkle little star is in the United States. She cannot recite the alpha-

bet beyond A B C D. She also mixes up the words of the Confiteor, the Apostles'
Creed, and the Our Father (which she once ended thus: "and do not forgive but
may thy kingdom come"). These deficits are all the more striking because Mrs. B
is a devout Christian and a recently retired schoolteacher. Thus, she had spent

a lifetime reciting these words. Whether multiplication tables, prayers, and nurs-

ery rhymes are stored in exactly the same circuits is unclear. But at the very least,
they seem to recruit parallel, probably neighboring neuronal networks of the

basal ganglia that were destroyed simultaneously by Mrs. B's subcortical lesion.
Up to now, this book has been concerned only with elementary arithmetic.

But what about more advanced mathematical abilities, such as algebra? Should
we postulate yet other neuronal networks dedicated to them? Recent discoveries
by the Austrian neuropsychologist Margarete Hittmair-Delazer seem to suggest

so. She has found that acalculic patients do not necessarily lose their knowledge
of algebra. One of her patients, like Mrs. B, lost his memory of addition and mul-

tiplication tables following a left subcortical lesion. Yet he could still recalculate
arithmetic facts by using sophisticated mathematical recipes that indicated an

excellent conceptual mastery of arithmetic. For instance, he could still solve

7x8 as 7x 10 - 7x2. Another patient, who had a Ph.D. in chemistry, had become
acalculic to the point of failing to solve 2x3, 7-3, 9-^-3, or 5x4. He could never-
theless still execute abstract formal calculations. Judiciously making use of the

commutativity, associativity, and distributivity of arithmetic operations, he was
able to simplify into 1 or axaxa into a3, and he recognized that the equation
— + is generally false. Although this issue has been the matter of very little
research to date, these two cases suggest, against all intuition, that the neuronal
circuits that hold algebraic knowledge must be largely independent of the net-
works involved in mental calculation.

Who Orchestrates the Brain's Computations?

The scattering of arithmetic functions in a multitude of cerebral circuits raises a
central issue for neuroscience: How are these distributed neuronal networks
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orchestrated? How do dispersed cerebral regions recognize that they all code for
the same number in different formats? Who or what decides to activate such and
such circuits, in a precise order, as a function of the required task? How does the
unity of consciousness, the feeling that we experience of executing a calculation
one step after the other, emerge from the collective functioning of multiple paral-
lel neuronal assemblies, each holding a small fraction of arithmetic knowledge?

Neuroscientists have not reached a definite answer yet. The current theory,
however, is that the brain dedicates specific circuits to the coordination of its own
networks. These circuits largely rely on areas located in the front of the brain,
notably the prefrontal cortex and the anterior cingulate cortex. They contribute
to the supervision of novel, nonautomated behaviors—planning, sequential
ordering, decision making, and error correction. It has been said that they consti-
tute a kind of "brain within the brain," a "central executive" who autonomously
regulates and manages behavior.

Some of these terms are so vague that they barely belong in our scientific
vocabulary yet. They sometimes recall the infamous homunculus, the little man
dear to Tex Avery and Walt Disney who, comfortably seated at the command
post of brain, directs the other body organs—but who directs him? Another
homunculus'? For most researchers, these models are but provisional metaphors.
They are destined to be heavily revised as the frontal sectors of the brain are pro-
gressively divided into well delimited areas, each assuming a restricted and man-
ageable function. Without doubt, no such thing as the frontal system exists.
Prefrontal areas comprise a multitude of networks specialized for working mem-
ory, error detection, or setting a course of action. Their collective behavior
ensures the appearance of a supervised coordination of cerebral activity.

Prefrontal areas play a key role in mathematics, including arithmetic. As a
rule, a prefrontal lesion does not affect the most elementary operations, but it can
yield a specific impairment in executing a series of operations in the appropriate
order. Not infrequently, neuropsychologists come across frontal patients who
have become unable to use the multiplication algorithm. They add when they
should multiply, they do not process digits in the correct order, they forget to car-
ry over when needed, or they mix up intermediate results—often the telltale
signs of a basic inability to supervise a sequence of operations.

Prefrontal cortex is especially vital for the on-line maintenance of the inter-
mediate results of a calculation. It provides a "working memory," an internal rep-
resentational workspace that allows the output of a computation to become the
input to another. Thus, an excellent test of frontal lesions consists in asking a
patient to subtract 7 successively, starting from 100. Although frontal patients
generally get the first subtraction right, they often jumble the following ones or
fall prey to some repetitive response pattern such as 100, 93, 83, 73, 63, and so on.
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Arithmetic word problems of the type used in elementary schools worldwide

also reveal the contribution of prefrontal areas. Frontal patients fail to design a

reasoned resolution strategy. Rather, they often impulsively rush to the first cal-

culation that jumps to mind. A typical case was described by the famous Russian

neuropsychologist Aleksandr Romanovitch Luria:

A patient with a lesion of the left frontal lobe was given the problem just stat-
ed: "there were 18 books on two shelves, and there were twice as many books
on one as on the other. How many books were on each shelf?" Having heard
(and repeated) it, the patient immediately carried out the operation 18^2=9
(corresponding to the portion of the problem "there were 18 books on two
shelves"). This was followed by the operation 18x2=36 (corresponding to the
portion "there were twice as many on one shelf"). After repetition of the
problem and further questioning, the patient carried out the following opera-
tions: 36x2=72; 36+18=54, etc. Characteristically, the patient himself is quite
satisfied with the result obtained.

Tim Shallice and Margaret Evans have shown that many frontal patients also

experience difficulties in "cognitive estimation": They frequently provide absurd

answers to simple numerical questions. One patient declared that the highest

building in London was between 18,000 and 20,000 feet tall. When his attention

was drawn to the fact that this was higher than the 17,000 feet he had previously

attributed to the highest mountain in Britain, he merely reduced his estimate of

the highest building to 15,000 feet! According to Shallice, such simple but unusual

questions simultaneously call for the invention of novel strategies for numerical

estimation, and for an evaluation of the plausibility of the retrieved result. Both

components—planning and verification—seem to be pivotal functions of the

"central executive" to which prefrontal regions make a main contribution.

With my American colleagues Ann Streissguth and Karen Kopera-Frye, I

assessed numerical estimation in teenagers whose mothers drank heavily during

pregnancy. Intrauterine exposure to alcohol can have dramatic teratogenic ef-
fects. Not only does it alter body development (children born of an alcoholic

mother have characteristic facial features that confer a family resemblance on

them); it also tampers with the laying down of cerebral circuits, causing micro-
cephalia and abnormal neuronal migration patterns in various brain regions,

including prefrontal cortex. Indeed, the teenagers we tested, although they could
all read and write numbers and perform simple calculations, provided truly non-
sensical numerical responses in cognitive estimation tasks. The size of a large

kitchen knife? Six feet and a half, said one of them. The duration of a drive from
San Francisco to New York? An hour. Curiously, although their numerical
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answers were often quite wrong, the patients almost always selected appropriate
units of measurement. Sometimes they even seemed to know the answers, yet
they still selected an inappropriate number. When asked to estimate the height of
the tallest tree in the world, one patient correctly reported "redwood," then gen-
erously granted it precisely 23 feet and. 2 inches!

The prefrontal cortex, so adept at executive functioning, is one of the cerebral
regions most unique to humans. Indeed, the emergence of our species was
accompanied by a huge increase in the size of frontal areas, to such an extent that
they represent about a third of our brain. Their synaptic maturation is particular-
ly slow—evidence shows that prefrontal circuits remain flexible at least up to pu-
berty and probably beyond. The prolonged maturation of prefrontal cortex
might explain some of the systematic errors to which all children in certain age
groups fall prey. I am thinking in particular of the Piagetian tests that tap into the
"nonconservation of number." Why do young children impulsively respond on
the basis of the length of a row of objects, even when they are so competent in
number processing? The fault may well lie in the immaturity of their frontal cor-
tex, which makes them unable to inhibit a spontaneous but incorrect tendency.
An immature "central executive" may also account for class inclusion errors in
which children judge that, in a bunch of flowers made up of eight roses and two
tulips, there are more roses than flowers. Such "childishness" may well be symp-
tomatic of a lack of supervision of behavior by the prefrontal cortex. And con-
versely, the frontal region is among the first to feel the effects of cerebral aging.
We can recognize several aspects of the frontal syndrome in "normal" aging:
inattention, deficiencies in planning, and perseveration of error, with a preserva-
tion of daily routine activities.

At the Origins of Cerebral Specialization

Let me now sketch a summarized model of how the human brain incorporates
arithmetic. Numerical knowledge is embedded in a panoply of specialized neu-
ronal circuits, or "modules." Some recognize digits, and others translate them
into an internal quantity. Still others recover arithmetic facts from memory or
prepare the articulatory plan that enables us to say the result aloud. The funda-
mental characteristic of these neuronal networks is their modularity. They func-
tion automatically, in a restricted domain, and with no particular goal in sight.
Each of them merely receives information in a certain input format and trans-
forms it into another format.
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The computational power of the human brain resides mostly in its ability to
connect these elementary circuits into a useful sequence, under the sway of exec-
utive brain areas such as the prefrontal cortex and the anterior cingulate. These
executive areas are responsible, under conditions that remain to be discovered,
for calling the elementary circuits in the appropriate order, managing the flow of
intermediate results in working memory, and controlling the accomplishment of
calculations by correcting potential errors. The specialization of cerebral areas
allows for an efficient division of labor. Their orchestration, under the aegis of
the prefrontal cortex, brings about a flexibility that is invaluable for the design
arid execution of novel arithmetic strategies.

Where might the extreme specialization of several cerebral areas for number
processing come from? Since time immemorial, approximate numerical quanti-
ties have been represented in the animal and human brains. A "quantitative mod-
ule," which may include circuits within the inferior parietal cortex, therefore
belongs to the genetic envelope of our species. But what should we think of the
specialization of occipito-temporal cortex for the visual recognition of digits and
letters, or of the implication of the left basal ganglia in multiplication? Reading
and calculation have been with us only a few thousand years, much too short a
lapse of time for evolution to have instilled in us a genetic predisposition for these
functions. Such cognitive abilities of recent origin must therefore invade cerebral
circuits initially assigned to a different use. They take them over so thoroughly
that they seem to become the circuit's new dedicated function.

The basis for such changes in the function of cerebral circuits is neuronal plas-
ticity: the ability of nerve cells to rewire themselves, both in the course of normal
development and learning, and following brain damage. Neuronal plasticity, how-
ever, is not unlimited. In the final analysis, the adult pattern of cerebral special-
ization must therefore result from a combination of genetic and epigenetic
constraints. Certain regions of the visual cortex, initially involved in object or
face recognition, progressively become specialized for reading when a child is
raised in a visual universe dominated by printed characters. Patches of cortex
entirely dedicated to digits and to letters emerge, perhaps by virtue of a general
learning principle ensuring that neurons coding for similar properties will tend to
group together on the cortical surface. Likewise, the primate brain comprises
innately specified circuits for learning and executing motor sequences. When a
child acquires multiplication tables, these circuits are naturally called upon and
therefore tend to specialize for calculation. Learning probably never creates radi-
cally novel cerebral circuits. But it can select, refine, and specialize preexisting cir-
cuits until their meaning and function depart considerably from those Mother
Nature initially assigned them.
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Flagrant limits to cerebral plasticity are seen in children who suffer from devel-
opmental dyscalculia, a seemingly insurmountable deficit in arithmetic acquisition.
Some of these children, although their intelligence is normal and they obtain
good results at school in most subjects, suffer from an exceedingly narrow handi-
cap that recalls the neuropsychological deficits seen in brain-damaged adults. The
odds are that they were subject to a precocious neuronal disorganization within
cerebral areas that should have normally specialized for number processing. Here
are three remarkable examples brought to us by the English neuropsychologist
Christine Temple and the psychologist Brian Butterworth:

• S. W. and H. M. are teenagers of normal intelligence who attend a conven-
tional school. Both speak fluently. H. M. is dyslexic, but her reading handi-
cap does not extend to numbers: Like S. W., she can read Arabic numerals
aloud and compare them. Yet H. M, and S. W exhibit a double dissociation
within calculation. S. W knows his arithmetic tables to near perfection and
can add, subtract, or multiply any two digits. However, he repeatedly fails
in multidigit calculations: He errs in the order and nature of the compo-
nent operations, and he carries over without rhyme or reason. Since child-
hood, he has suffered from a selective deficit of calculation procedures so
severe that even a specialized rehabilitation program has not been able to
compensate it. Conversely, H. M. is a master in multidigit calculation algo-
rithms, but she could never learn the multiplication table. At nineteen, she
still requires more than seven seconds to multiply two digits, and the result
that she reaches is incorrect in more than half of the trials.

S. W. and H. M.'s highly selective deficits are unlikely to be due to their
laziness or to major flaws in their education. A neurological origin is more
likely. Since childhood S. W has suffered from tuberous sclerosis and epilep-
tic fits. His CT scan shows an abnormal mass of nerve cells in the right
frontal lobe, an anomaly that may well account for his insurmountable
inability to perform sequential calculations. As to H. M., although she suf-
fers from no known neurological disorder, it would be well worth examin-
ing with modern brain imaging tools the extent to which her parietal lobe
and subcortical circuits are intact.

• Paul is an eleven-year-old boy of normal intelligence. He suffers no known
neurological disease, has a normal command of language, and uses an ex-
tensive vocabulary. Yet from his earliest youth Paul has experienced excep-
tionally severe difficulties in arithmetic. Multiplication, subtraction, and
division are impossible to him. At his best, he occasionally succeeds in
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adding two digits by counting on his fingers. His deficit even extends to

reading and writing numbers. When taking numbers down in dictation,

instead of 2 he writes down 3 or 8! He also fails dramatically when reading

Arabic numerals or spelled-out number words aloud: 1 is read as "nine,"

and four as "two." Only numerals are subject to these strange word substitu-

tions. Paul can read even the most complex and irregular English words,

such as colonel. He even finds a plausible pronunciation for fictitious words

such asfibe or intertergal. Why then does he read the word three as "eight"?

Paul apparently suffers from a complete disorganization of number sense,

comparable in severity to Mr. M's predicament. This deficit occurred so ear-

ly on that it seems to have prevented Paul from attributing any meaning to

number words.

• C. W is a young man in his thirties. His intelligence is normal, although he

never really shone in school. Though he can more or less read and write

numerals under three digits long, their quantitative meaning escapes him.

Adding or subtracting two digits takes him more than three seconds. In

order to multiply, he resorts to repeated addition. He succeeds only when

both operands are smaller than 5 and can therefore be portrayed with the

fingers of one hand. More surprising still, he cannot tell without counting

which of two numbers is the larger. He thus shows an inverse distance

effect: in contrast to a normal person, it takes him less time to compare 5

and 6 than to compare 5 and 9, because the larger the numerical distance,

the longer he has to count. Even the subitizing of very small sets of objects

is beyond his reach. When three dots appear on a computer screen, he has

no immediate notion of their numerosity unless he counts them one by

one. C. W seems to have been devoid from childhood of any rapid and
intuitive perception of numerical quantities.

These remarkable cases call into question the extent of cerebral plasticity in

the developing brain. Although neuronal circuits are highly modifiable, especially

in young children, they are not ready to assume any function. Some circuits,

whose main connection patterns are under genetic control, are biased to become

the neuronal substrate of narrowly defined functions such as the evaluation of
numerical quantities or the storage of rote multiplication facts. Their destruc-

tion, even in the very young, can cause a selective deficit that is not always open
to compensation by neighboring brain areas.

This observation brings us back once more to a recurrent theme in this book:

the strong constraints that our cerebral architecture imposes on the mental
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manipulation of mathematical objects. Numbers do not have full latitude to
invade any available neuronal networks of the child's brain. Only certain circuits
are capable of contributing to calculation—either because they are part of our
innate sense of numerical quantities, such as, perhaps, some areas of the inferior
parietal cortex, or because, though they were initially destined for some other
use, their neural organization turns out to be sufficiently flexible and close to the
desired function so that they can be "recycled" for number processing.



The Computing
Brain

A picture ... shows Einstein lying in bed, his head bristling with
electrical wires: his brain waves are being recorded while he is

asked to "think about relativity."

Roland Barthes, Mythologies

N obel Prize winner Richard Feynman once remarked that the physicist
who analyzes subatomic collisions in a particle accelerator is not very dif-
ferent from someone who sets out to study clockmaking by smashing

two watches together and examining the remains. This tongue-in-cheek remark
applies equally well to neuropsychology. It too is an indirect science in which the
normal organization of cerebral circuits is inferred from the way they function
after having been damaged—an awkward enterprise not unlike trying to deduce
the inner workings of a clock from the examination of hundreds of broken
movements.

Even if most brain scientists trust neuropsychological inferences, there comes
a time when they would like to "open the black box" and observe the neural cir-
cuits underlying mental calculation directly. It would be an extraordinary step for-
ward if we could somehow measure the cellular firing patterns that code for
numbers. Jean-Pierre Changeux maintains this forcefully: "These 'mathematical
objects' correspond to physical states of our brain in such a way that it ought in
principle to be possible to observe them from the outside looking in, using various
methods of brain imaging."

2 0 7

Chapter 8
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This neurobiologist's dream is now on the verge of becoming a reality. In the
last few years, new tools—positron emission tomography, functional magnetic
resonance imaging, and electro- and magnetoencephalography—have begun to
provide pictures of brain activity in living, thinking humans. With modern brain
imaging tools, a short experiment is now sufficient to examine which brain
regions are active while a normal subject reads, calculates, or plays chess. Re-
cordings of the electrical and magnetic activity of the brain with millisecond
accuracy allow us to unveil the dynamics of cerebral circuits and the precise
moment when they become active.

In several respects, the new pictures of the active brain are complementary to
the results gathered from neuropsychology. Several cerebral areas long failed to
be appreciated by neuropsychologists, either because they were rarely lesioiied or
because their destruction was very damaging or lethal. Today an entire network
can be visualized in a single experiment. In the past, it was also difficult to study
the temporal organization of cerebral circuits in the damaged brain, which often
undergoes a profound reorganization. Modern imaging is able to disclose the
propagation of neuronal activity to many successive regions of the normal
human brain, almost in real time.

We now have amazing equipment worthy of an Isaac Asimov novel at our dis-
posal. How can one fail to marvel at the idea that we can visualize the physiolog-
ical changes that support our thoughts? Since this new world has been made
accessible to scientists, dozens of experiments have explored the cerebral basis of
functions as diverse as reading, motion perception, verbal associations, motor
learning, visual imagery, and even our sense of pain. It would be impossible to
review in full all the discoveries that this methodological revolution has permit-
ted. In this chapter, I focus exclusively on studies that reveal human cerebral activ-
ity during mental arithmetic.

Does Mental Calculation Increase Brain Metabolism?

To retrace the heroic beginning of brain imaging, we must temporarily forget all
about modern technologies and head far back into the history of neuroscience.
In 1931, a report by William G. Lennox from the department of neuropathology
at Harvard, soberly titled "The cerebral circulation: the effect of mental work,"
was the first to boldly probe the impact of arithmetic activity on brain function.
Lennox raised the critical issue of the influence of cognitive processing on the
energy balance of the brain. Does mental calculation involve a measurable
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Figure 8.1. As early as 1931, William Lennox showed that intense mental calculation changes

the oxygen content of blood samples taken from the internal jugular vein. (After Lennox, 1931.)

expenditure of energy? Does the brain burn more oxygen when the computa-
tions it performs increase in intensity?

The experimental method that Lennox devised was innovative but appalling.
It consisted of drawing blood samples from the internal jugular vein and measur-
ing their oxygen and carbon dioxide content. The article did not report whether
the twenty-four subjects, epileptic patients who were being treated at Boston City
Hospital, had been informed of the risk that they incurred and of the non-
therapeutic objectives of the research. In the 1930s, ethical standards were still
quite lenient.

Lennox's experimental design, however, was clever. In a first group of fifteen
subjects, he took three consecutive blood samples. The first was taken after the
subjects had rested for half an hour with their eyes closed. They were then given
a sheet covered with arithmetic problems, and five minutes later, while they
struggled to solve them, a second blood sample was taken. Finally, the subjects
were allowed to rest for ten to fifteen minutes before the final sample was taken.
The results are striking: Among the three measures, the one that had been per-
formed during mental calculation showed a marked increase in oxygen content
(Figure 8.1). Lennox did not report any statistical test on this finding, but my own
calculations from the raw data evaluate to only about 2% the likelihood that this
large variation across samples could be due to chance.

One objection, however, had to be refuted. That was, in the author's own
words, "It is difficult for the subject either to 'make his mind a blank' or to con-
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centrate on the problems set before him while a needle is being inserted deeply
into his neck (sic!). The degree of apprehension or of discomfort may not have
been the same each time that blood was withdrawn."

To meet this criticism, Lennox took the precaution of repeating the same
series of three measures on another group of nine subjects that remained at rest
throughout the test. For these subjects, the oxygen content remained practically
constant. Thus, the intense efforts required by mental calculation had to be
responsible for the increase observed in the experimental group. The finding
opened revolutionary perspectives. For the first time, an objective measurement
of the energy consumed by intellectual effort could be envisaged.

In detail, however, the results raised an apparent paradox that Lennox did not
fail to notice. Blood was drawn from the internal jugular vein, hence after it had
irrigated the cerebrum. But mental activity was expected to increase the con-
sumption of oxygen. Thus, for equal cerebral blood flow, the oxygen content of
the venous blood should have decreased rather than increased during intellectual
work. To resolve this contradiction, Lennox exhibited remarkable anticipation
powers by stating, as early as in 1931, a principle that has remained valid to this
day: "The result can be explained by a dilatation of cerebral vessels with a result-
ing increase in the speed of blood flow through the brain, a factor that outweighs
the increased consumption of oxygen."

The most recent studies in functional brain imaging have confirmed this pos-
tulate, which lies at the heart of the modern method of functional magnetic res-
onance imaging. The regulation system that accelerates cerebral blood flow in
response to a local increase in neuronal activity does indeed bring in more oxygen
than the brain can consume. The reasons for this curious phenomenon still
remain poorly understood. That Lennox managed to foresee it shows the extent
to which one can trust his work, despite the primitive and invasive technique on
which it is based.

To close this historical discussion, it should be noted that a subsequent study
by Louis Sokoloff and his colleagues at the University of Pennsylvania, in 1955,
did not manage to replicate Lennox's results (though it relied on a slightly differ-
ent method). Looking back on it, several criticisms also come to mind. First, the
increase in the oxygen content that Lennox observed may have had little to do
with mental calculation. It could simply have been due to the intense perceptual
and motor activity required to scrutinize a sheet filled with mathematical signs
and to give the numerical results. In other words, nothing proves that Lennox
really measured the physiological bases of a purely mental activity as opposed to
greater visual or motor work.

To a modern reader, however, the article's most obvious deficiency lies in its
total neglect of the issue of cerebral localization. During calculation, does cere-
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bral blood flow increase throughout the cerebrum? Or are the changes circum-

scribed to specific brain regions? And in the latter case, could cerebral blood flow
serve as a tool to localize areas dedicated to distinct mental processes on the corti-
cal surface? Lennox's article did not even mention whether the blood samples had

been drawn from the left or the right internal jugular vein, a fact that might have
supported conclusions about the hemispheric lateralization of mental calculation

procedures. Improvements in spatial localization, and the production of genuine
pictures of human brain activity, were obliged to wait until the 1970s and 1980s,

which finally saw the advent of reliable functional brain imaging techniques.

The Principle of Positron Emission Tomography

Following Lennox's pioneer work, several studies have confirmed that the brain is
amazingly voracious in its need for energy. Indeed, it alone is responsible for

almost a quarter of the energy expended by the entire body. Its local energy con-
sumption, however, is not a constant. It can suddenly rise, in a matter of seconds,
when a cerebral region is put to use. Sokoloff was the first to demonstrate the

direct relations between cerebral blood flow, local metabolism, and the degree of
activity of cerebral areas. If I decide to rapidly wiggle my right index finger, for
instance, neurons start to fire within the minuscule patch of left motor cortex
dedicated to the command of the muscles driving that finger. A few seconds later,
glucose consumption increases in this area of cerebral tissue. In parallel, cerebral
blood flow increases within the vessels and capillaries that irrigate the region.

The increased volume of circulating blood meets and even exceeds the local
increase in oxygen consumption.

In the last twenty years, these regulation mechanisms have been exploited to
determine which brain regions are active during various mental activities. At the
heart of these innovative brain imaging techniques is an extremely simple idea: If
one can measure local glucose metabolism or blood flow in a given brain area,
one should immediately obtain an indication of recent neural activity. But the
implementation of this idea is tricky. How can one assess blood flow or the quan-
tity of degraded glucose at each point in the brain?

Sokoloff found a solution for animals. His now classical autoradiography
technique consists in injecting a molecule marked with a radioactive tracer, such
as fluorodeoxyglucose, and then having the animal perform the desired task (say
moving the right paw). The radioactive fluorine atom, attached to the glucose
molecule, is preferentially deposited in the cerebral regions that burn up the most
energy. Subsequently, the animal's brain is cut into thin slices. Each slice is placed
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in darkness against a photographic film, which gets exposed only directly oppo-
site the zones where radioactivity is concentrated. The series of slices thus per-
mits reconstruction of the three-dimensional extent of the areas that were active
at the time of the injection.

The spatial resolution of autoradiography is excellent, but obvious reasons
make it unsuitable for research with humans: Neither brain slicing nor the injec-
tion of high doses of radioactivity are likely to meet the subject's approval. These
difficulties can be circumvented, however, by the magic of three-dimensional re-
construction methods derived from physics and computer science. Experiments
with humans only use radioactive tracers with a short half-life span, anywhere
between a few minutes and a few hours. As soon as the experiment is over, all
radioactivity quickly vanishes. The injected doses of radioactivity are harmless
unless exposure is repeated frequently. Thus the experiment is no more danger-
ous for the subject than the typical X-ray, and no more painful than a regular
intravenous injection. In order for the experiment to proceed in accordance with
medical ethics, subjects are fully informed of the objectives and methods used in
the research before they volunteer.

Only one problem remains: how to detect the concentration of radioactivity
within the physically inaccessible volume of the skull? Positron emission tomog-
raphy, also known as "PET scanning," provides a high-tech solution. Consider for
a moment the nuclear physics of a subject who has just been injected with a trac-
er that emits positrons—for instance, a water molecule in which the usual oxy-
gen atom has been replaced by an unstable atom of oxygen 15 (H2

150). After an
unpredictable delay ranging from seconds to minutes, this atom emits a positron,
an antimatter particle denoted as e+ whose properties are exactly symmetrical
with those of the familiar electron e~. The subject's head, his whole body in fact,
is thus turned into an antimatter generator! As you may guess, this state of affairs
cannot last very long. Only a few millimeters away, the positron collides with its
twin the electron, which abounds in normal matter. The two annihilate each oth-
er by emitting two high-energy gamma rays of opposite polarization that exit
from the scalp without interacting much with the surrounding atoms.

The secret of PET scanning consists in detecting the photons emitted by the
subject's brain. To this end, hundreds of crystals coupled to photomultipliers are
arranged into a circle around the head, and they detect any suspect disintegra-
tion. In the older technique of single photon emission tomography, only isolated
gamma rays emitted by a radioactive source such as Xenon (133Xe) were of inter-
est. In positron emission tomography, it is the simultaneous occurrence of two
gamma rays that is sought. The quasi-simultaneous detection of two photons by
diametrically opposite detectors is an almost sure sign that a positron has disinte-
grated. The alignment of the detectors, sometimes combined with an analysis of
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the minuscule lag between the two detections ("time of flight"), helps locate this
disintegration in all three dimensions. As indicated by its etymology, the tomo-
graph thus produces a "sliced picture" of the distribution of radioactivity in a giv-
en volume of brain tissue. This quantity of radioactivity is a good indicator of
local cerebral blood flow, which is itself a good indicator of the average neuronal
activity in that area.

Practically speaking, a typical experiment using positron emission tomogra-
phy runs as follows: A volunteer, lying in the tomograph, starts to perform the
requested task (moving the index finger, multiplying digits, etc.). At the same
time, a cyclotron produces a small quantity of a radioactive tracer. As soon as it is
available, the tracer must be injected immediately or else its radioactivity rapidly
decreases below the detectable level. The subject continues mental activity for
one or two minutes after the injection. Throughout that period, the tomograph
reconstructs the spatial distribution of radioactivity in the subject's brain. The
volunteer then rests for ten to fifteen minutes until radioactivity falls back to an
undetectable level. The procedure can then be repeated up to twelve times in the
same subject, possibly with different task instructions on each injection.

Can One Localize Mathematical Thought?

Although the first pictures of the active brain date back to the 1970s, our quest
for images of the calculating brain takes us back only as far as 1985. That year,
two Swedish researchers, P. Roland and L. Friberg, published a result that fills
many of the gaps left by Lennox's work. The first sentences of their article sets
the framework:

These experiments were undertaken to demonstrate that pure mental activity,
thinking, increases the cerebral blood flow and that different types of thinking
increase the regional cerebral blood flow in different cortical areas. As a first
approach, thinking was defined as brain work in the form of operations on internal
information, done by an awake subject.

In order to pinpoint "thought processes," Roland and Friberg meticulously
controlled the tasks that they asked subjects to perform. In the task most relevant
to this discussion, the subjects had repeatedly to subtract 3 from a given number
(50-3=47, 47-3=44; etc.). The calculations were silent. Only after a few minutes did
the experimenter interrupt the subjects and asked them to say what number they
had reached. Throughout the measurement interval, mental operations thus pro-
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Figure 8.2. In 1985, Roland and Friberg published the first images of cerebral activity during

mental calculation. At the time, their method could only visualize one hemisphere at a time. Each

image thus represents the data from one volunteer. When compared to a rest period, repeated sub-

traction yields bilateral activations in the inferior parietal cortex (arrow) as well as in multiple

regions of the prefrontal cortex. (Adapted from Roland and Friberg 1985; copyright © 1985 by

American Physiological Society).
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ceeded in a purely internal manner, with no detectable sensory or motor activity.
In addition to this mental calculation task, two other tests studied either spa-

tial imagery (picture in your mind the route that you would follow if you left
home and took alternate right or left turns) or verbal flexibility (mentally recite a
word list in an unusual order). The brain regions that were active during each
task were determined by comparison to a measure of cerebral blood flow
obtained while the subject was at rest, thinking about nothing in particular. The
brain imaging procedure used by Roland and Friberg, now outdated, called for an
injection of radioactive Xenon (133Xe) in the internal carotid artery and the detec-
tion of single photons.Without attaining the accuracy of PET scanning, the
method visualized local increases in blood flow near the cortical surface.

In each of eleven volunteers, the cerebral activations during mental calcula-
tion were concentrated in two major brain areas: a vast prefrontal region and a
most restricted inferior parietal region near the angular gyrus (Figure 8.2). Both
regions were found active in the left and right hemispheres, although the activa-
tion was slightly greater on the left than on the right.

The anatomical precision of this early experiment was far from perfect, but its
results have recently been replicated by Jordan Grafman, Denis Le Bihan, and
their colleagues at the National Institutes of Health with a much more accurate
method called functional magnetic resonance imaging. Bilateral activations of
the prefrontal and inferior parietal cortices were again found in all subjects during
repeated subtraction, although the number of activated pixels was larger in the
left hemisphere than in the right. I served as a subject in a very similar pilot exper-
iment in Orsay, near Paris. Figure 8.3 shows a slice of my brain while I struggle
with the repeated subtraction task. Bilateral parietal and prefrontal activations are
clearly visible.

The results from the other conditions of Roland and Friberg's experiment
suggested that parietal and prefrontal activations were related to different aspects
of the task. The prefrontal region was found in all mental manipulation tasks, not
just those involving mental subtraction. Roland and Friberg ascribed it a very
general role in the "organization of thought." By contrast, the inferior parietal
region seemed specific to mental calculation, since it did not activate during spa-
tial imagery or verbal flexibility tasks. The two researchers attributed to it a spe-
cialization for mathematical thought, and in particular for the retrieval of
subtraction results from memory.

Roland and Friberg's experiment played a crucial role in drawing the attention
of the scientific community to the power of functional imaging, a full three years
before Michael Posner, Steve Petersen, Peter Fox, and Marcus Raichle's celebrat-
ed demonstration of distinct brain activations for different aspects of language
processing. The Swedish team's work indeed proved that the new techniques
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Figure 8.3. A slice through the author's brain during a replication of Roland and Friberg's

experiment. Cerebral regions whose activity increases whenever I subtract were determined by

high-field (3 Tesla) functional magnetic resonance imaging and were superimposed on a classical

anatomical MR image. Activations are visible in the inferior parietal cortex (white arrows) and

the prefrontal cortex. (Dehaene, Le Bihan, and van de Moortele, unpublished data, 1996.)

could resolve brain activation differences related to distinct cognitive tasks. What
should one make, however, of their general conclusions concerning "thinking"?
Can one really localize a cerebral area of "mathematical thought" in the human

brain?
Personally, I take Roland and Friberg's functional labels with a pinch of salt.

The very notion that "thought" is a valid object of scientific study and that it can

be localized to a small number of cerebral areas recalls an old discipline that was
once relegated to the museum but is making an insidious comeback: Gall and

Spurzheim's phrenology, or the hypothesis that the brain contains a panoply of

organs, each dedicated to a very complex function such as the "love of one's

progeny." Phrenology has been abandoned for more than a century. It would be

surely unfair to accuse Roland and his colleagues, who pioneered the field of
brain imaging, of trying to revive it. Yet it takes little sagacity to observe that
many recent experiments in brain imaging are conceived in a "neo-phrenologic"

framework. Their only objective seems to be the labeling of cerebral areas.
Positron emission tomography is implicitly treated by many research groups as a
simple mapping tool that directly discloses the cerebral areas underlying a given
function, be it mathematics, "thought," or even consciousness. The method sup-
poses a clear and unique relationship between cerebral areas and cognitive abili-
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ties: Calculation rests on the inferior parietal region, the organization of thought
is taken care of by frontal cortex, and so on.

We have every reason to think that the brain does not work this way. Even
seemingly simple functions call for the coordination of a large number of cere-
bral areas, each making a modest and mechanical contribution to cognitive pro-
cessing. Ten or twenty cerebral areas are activated when a subject reads words,
ponders over their meaning, imagines a scene, or performs a calculation. Each
region is responsible for an elementary operation such as recognizing printed let-
ters, computing their pronunciation, or determining the grammatical category of
a word. Neither an isolated neuron, nor a cortical column, nor even a cerebral
area can "think." Only by combining the capacities of several million neurons,
spread out in distributed cortical and subcortical networks, does the brain attain
its impressive computational power. The very notion that a single cerebral region
could be associated with a process as general as the "organization of thought" is
now obsolete.

How, then, should one reinterpret Roland and Friberg's results? As we saw in
Chapter 7, the inferior parietal area is the region that is impaired in Gerstmann's
syndrome. Damage to it was responsible for the loss of number sense in patient
Mr. M, who was so impaired that he could no longer compute 3-1 and believed
that 7 fell between 2 and 4. Hence, this region probably contributes to a narrow
process: the transformation of numerical symbols into quantities, and the rep-
resentation of relative number magnitudes. It does not play a generic role in
arithmetic since damage to it does not necessarily affect the rote retrieval of
simple arithmetic facts (2+2=4), nor the rules of algebra ((a+b)2 = a2 + 2ab + b2), nor
the encyclopedic knowledge of numbers (1492=Columbus's discovery). It is
involved only in the representation of numerical quantities and their position-
ing on a mental number line. Its activation during repeated subtraction in nor-
mal subjects thus provides a nice confirmation of its crucial role in processing
quantities.

As for the extended prefrontal activation reported by the Swedish team, it
probably embraces several areas, each with its own function: sequential ordering
of successive operations, control over their execution, error correction, inhibition
of verbal responses, and, above all, working memory. In a sector of prefrontal
cortex called the dorso-lateral region or "area 46," neurons are known to be in-
volved in the on-line maintenance of past or anticipated events in the absence of
any external input (as when we rehearse a phone number, for instance).
Remarkable experiments by Joachim Fuster and Patricia Goldman-Rakic, among
others, have shown that prefrontal cortical neurons maintain a sustained level of
firing when a monkey holds information in memory for several seconds. All three
tasks employed by Roland and Friberg relied heavily on this type of working
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memory. In the repeated subtraction task, for instance, subjects had constantly to
keep in mind the number that they had reached and update it after each subtrac-
tion. This important memory load likely explains the involvement of prefrontal
circuits in this task.

When the Brain Multiplies or Compares

Roland and Friberg's experiment probed only a single complex arithmetical task,
with the aim of identifying the areas involved in arithmetic. This was just a first
step. Neuropsychological dissociations lead us to expect a much finer-grained
fragmentation of cerebral areas. Depending on the requested arithmetic opera-
tion, very different cerebral networks should activate. To begin to evaluate this
hypothesis, my colleagues and I recently examined how cerebral activity changes
in the course of number comparison and multiplication.

The experiment was performed in Orsay at a medical research center well
equipped for measuring cerebral metabolism. Eight medical students served as
volunteers. Upon their arrival at the hospital in the morning, high-resolution
magnetic resonance anatomical images of their brains were made. Later in the
afternoon, positron emission tomography provided us with the first detailed
images of the areas that were activated while they processed numbers.

Remember Mr. N, the patient who could not multiply but could still tell
which of two numbers was larger? The goal of our study was to investigate
whether the neuronal circuits involved in multiplication and comparison did par-
tially rest on distinct brain areas, as we had postulated based on Mr. N's results.
We thus presented subjects with a series of pairs of digits that they either had to
compare or multiply mentally. In both cases, the result of the operation—either
the larger of the two digits or their product—had to be named covertly, without
actually moving the lips. Cerebral blood flow during those two tasks was con-
trasted to a third measure obtained while the subjects were at rest.

As we expected, several brain regions were equally active during multi-
plication and during comparison relative to the rest period. These regions most
probably support functions common to both tasks, such as extracting visual
information (occipital cortex), or maintaining gaze fixation and the internal simu-
lation of speech production (supplementary motor area and precentral cortex).

The inferior parietal cortex, so crucial to quantitative number sense, was also
active. Oddly, it was intensely active in both hemispheres during multiplication,
while its activity during comparison was small and on the verge of being inde-
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Figure 8.4. Positron emission tomography reveals wide networks of cerebral areas whose blood

flow changes when subjects rest with their eyes closed, multiply pairs of Arabic digits, or compare

the very same digits. (After Dehaene et al. 1996.)
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tectable. We had expected the reverse: Comparison calls for the processing of
numerical quantities, and simple multiplication requires only access to verbal
memory. However, not all the multiplication problems we used were simple. The
list included problems such as 8x9 or 7x6 on which our subjects often hesitated or
failed altogether. Since their verbal memory for arithmetic facts seemed unreli-
able, we speculate that they were often forced to resort to backup strategies heav-
ily dependent on the inferior parietal cortex to provide a plausible answer.
Conversely, the number comparison task we used was probably too easy because
the numbers ranged only from 1 to 9. Finding the larger digit may have been too
simple to stimulate intense inferior parietal activation. Perhaps we also left the
subjects too much time to respond, which may have diluted the activations to the
point of rendering them too small to detect. At any rate, inferior parietal cortex
seemed to activate in direct proportion to the difficulty of the numerical tasks
that the subjects performed.

The most interesting results emerged, however, when we directly contrasted
number comparison with multiplication. Several temporal, frontal and parietal
regions showed a notable shift in hemispheric asymmetries. During multiplica-
tion, cerebral activity was more intense in the left hemisphere, but during com-
parison it was equally distributed across the two hemispheres or even shifted to
the right. This observation is in agreement with the notion that multiplication,
but not comparison, rests in part on the language abilities of the left hemisphere.
Contrary to multiplication, number comparison does not have to be learned by
rote. A mental representation of number magnitude emerges without explicit
teaching in young children and even in animals. Hence, the brain does not need
to convert digits to a verbal format in order to compare them. Functional brain
imaging confirms that the comparison of numerical magnitudes is a nonlinguis-
tic activity that rests at least as much on the right hemisphere as on the left. Each
hemisphere can recognize digits and translate them into a mental representation
of quantities to compare them.

A subcortical nucleus, the left lenticular nucleus, was also more active during
multiplication than during comparison. We know from Chapter 7 that a lesion in
this area can dramatically impair memory for multiplication facts and other ver-
bal automatisms. Remember Mrs. B, who had forgotten how to recite "three
times nine is twenty-seven," the alphabet, and the Our Father? Her lesion was
right in this area. The lenticular nucleus belongs to the basal ganglia, which are
generally thought to contribute to the routine aspects of motor behavior.
Functional brain imaging suggests that they also contribute to more elaborate
cognitive functions. Perhaps arithmetic tables are stored in the form of automatic
word sequences, so that recalling them becomes mechanical. Reciting the multi-
plication table at school may imprint every word of it in our deep brain struc-
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tures. This would explain why even the most fluent bilinguals still prefer to calcu-
late in the language in which they acquired arithmetic.

The diversity of cerebral areas involved in multiplication and comparison
underlines once more that arithmetic is not a holistic phrenological "faculty"
associated with a single calculation center. Each operation recruits an extended
cerebral network. Unlike a computer, the brain does not have a specialized arith-
metic processor. A more appropriate metaphor is that of a heterogeneous group
of dumb agents. Each is unable to accomplish much alone, but as a group they
manage to solve a problem by dividing it among themselves. Even an act as sim-
ple as multiplying two digits requires the collaboration of millions of neurons
distributed in many brain areas.

The Limits of Positron Emission Tomography

Positron emission tomography is a wonderful tool, but it has some unfortunate
limits. To verify our hypotheses on the cortical and subcortical processing of
numerical information, we would ideally like to observe the time course of cere-
bral activations during calculation. If possible, we would want to obtain a new
image of brain activity every hundredth of a second. We could then follow the
propagation of neuronal activity from the posterior visual areas all the way to the
language areas, the circuits controlling memory, the motor regions, and so on.
Yet though PET scanning is a remarkable tool for identifying active anatomical
regions, its excellent spatial resolution is accompanied by a deplorable temporal
resolution. Each image depicts the average blood flow over a period of at least
forty seconds. Thus, PET is almost totally blind to the temporal dimension of
brain activity.

There are two main reasons for this technical limitation. First, the photomul-
tipliers that tally up positron disintegrations must detect a minimum number of
events before a significant picture emerges. Yet the number of disintegrations per
second is a direct function of the dose of injected radioactivity, which, for ethical
reasons, cannot be raised much beyond today's limits. Second, even if the dura-
tion of each measurement could be shortened, temporal accuracy would remain
fundamentally limited by the delayed response of cerebral blood flow to a change
in neural activity. When neurons in a given area start to fire, several seconds
elapse before blood flow starts to rise. Even the recent technique of functional
magnetic resonance imaging, which can acquire images of blood flow in a frac-
tion of a second, suffers to a similar extent from the slowness of blood flow
responses.
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In a nutshell, here is the crux of the problem. The brain detects, computes,
reflects, and reacts in a fraction of a second. Functional techniques based on
blood flow reduce this complex sequence of activity to a static picture. It is com-
parable to photographing the finish of a horse race with an exposure time of sev-
eral seconds. The fuzzy picture might show which horses made it past the finish
line, but the order in which they arrived would be lost. What we need is a tech-
nique that could take a series of snapshots of cerebral activity and later replay the
movie in slow motion.

The Brain Electric

Electro- and magnetoencephalography are the only techniques that currently
come close to meeting this challenge. Both take advantage of the fact that the
brain behaves like a generator of electric current. To better understand how they
work, a quick reminder of how nerve cells communicate might help. Any ner-
vous system, whether it belongs to a human or a leech, consists primarily of a
packed bundle of cables. Each neuron has an axon, a long cable that conveys
information through waves of depolarization called action potentials. Each
neuron also possesses a bushy arborization of dendrites that receive the signals
coming from other nerve cells. When an action potential reaches a synapse—the
contact zone between one neuron's axon terminal and another's dendrite—neu-
rotransmitter molecules are released from the nerve terminal and tie on to other
specialized molecules called receptors inserted within the dendritic membrane.
This causes the receptors to alter their shape. They switch to an "open" configu-
ration in which a channel opens through the cell membrane, letting ions flow
into the cell. Very schematically, this is how a nerve impulse crosses the barrier of
the cellular membrane and is transmitted from one neuron to the next.

Since ions carry an electric charge, their movement across the cellular mem-
brane and within the dendritic tree produces a very small amount of current.
Each neuron thus behaves as a tiny electric generator. Indeed, the electric organ
of fish such as the torpedo ray is nothing but a giant synapse in which such elec-
trochemical units are arranged into a powerful battery. From the torpedo's elec-
trical organ to the human nervous system, the molecular mechanism is so similar
that an almost identical receptor molecule is found in both. Molecular neurobiol-
ogists were thus able to make an important step forward when a concentrate of
torpedo fish provided a sufficient amount of the receptor to characterize its mol-
ecular structure.

Coming back to the human brain, each active cerebral area thus produces an
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electromagnetic wave form that is transmitted by volume conduction all the way
to the scalp. More than fifty years ago, Hans Berger first put this knowledge into
practice by affixing electrodes on the scalp of several volunteers and recording an
electric signal—the first electroencephalogram. This signal, which results from
the synchronous activation of several million synapses, is very weak: only a few
millionths of a volt. It is also highly chaotic and shows seemingly random oscilla-
tions. However, when one synchronizes the recording with an external event,
such as a visually presented digit, and when one averages across many presenta-
tions, a reproducible sequence of electric activity called the event-related potential
emerges from the chaos. This sequence conceals a wealth of temporal informa-
tion. The signals are propagated almost instantaneously to the scalp surface,
where they can be recorded in real time—for instance, every millisecond. A con-
tinuous record of cerebral activity is then available, which faithfully reflects the
order in which each brain region was activated.

Modern technologies now make it possible to record event-related potentials
from up to 64, 128, or even 256 scalp electrodes. Their shape varies from elec-
trode to electrode, and this spatial distribution provides precious indications
about the location of active brain areas. In this respect, however, the method
remains unsatisfactory. The anatomical accuracy of electroencephalographic
recordings is poor because a fundamental physical ambiguity precludes their
direct attribution to an identifiable anatomical structure. At best, the approxi-
mate state of activity of an extended cortical region can be reconstructed by
making more or less plausible inferences. A similar difficulty affects the slightly
more precise but considerably more expensive method of magnetoencephalogra-
phy, in which one records magnetic fields rather than electric potentials. Both
methods, however, possess an unsurpassed capacity to determine the exact time
when different cerebral areas come into play during mental computations.

The Time Line of the Number Line

Any of us takes about four-tenths of a second to decide whether a given digit is
larger or smaller than 5. Yet this time corresponds to the total duration of a
whole series of operations, from the visual identification of the target digit to the
motor response. Can it be decomposed into small steps? Electroencephalography
turns out to be an ideal method for measuring, with millisecond accuracy, how
long it takes our brain to decide that 4 is smaller than 5.

In one of my recent experiments, Arabic digits or number words were flashed
on a computer screen. Volunteers were asked to press one key for numbers small-
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Figure 8.5. By recording the minute changes in scalp voltage generated by cerebral activity (elec-

troencephalography), the sequence of cerebral activations during numerical comparison can be

reconstructed. In this experiment, volunteers pressed keys with their left or right hand, as fast as

they could, to indicate whether the numbers they saw were larger or smaller than 5. At least four

processing stages were identified: 1. visual identification of the target Arabic digit or number

word; 2. representation of the corresponding quantity and comparison with the memorized refer-

ence; 3. programming and execution of the manual response; and 4. correction of occasional

errors. (After Dehaene 1996.)

er than 5, and another for numbers larger than 5. Their event-related potentials
were recorded from sixty-four electrodes spread out on the scalp. Special software
allowed for the reconstruction, frame by frame, of the evolution of surface
potentials in the various conditions of the experiment (Figure 8.5).

The movie starts at the exact moment when the number appears before the
subject's eyes. For several tens of milliseconds, the electric potentials remain
close to zero. At around 100 milliseconds, a positive potential called the PI
appears on the rear of the scalp. It reflects the activation of visual areas of the
occipital lobe. At this stage, no difference between Arabic digits and number
words is perceptible: only low-level visual procedures are engaged. But suddenly,
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between 100 and 150 milliseconds, the two conditions diverge. While words such
as four generate a negative potential almost completely lateralized to the left
hemisphere, digits such as 4 produce a bilateral potential. As we had inferred
from the performance of split-brain patients, the two hemispheres are simultane-
ously implied in the visual identification of Arabic digits. Number words, howev-
er, are recognized only by the left hemisphere.

Over the left-hand side at the back of the scalp, the event-related potentials
evoked by words and digits appear virtually identical. More precise recordings
suggest, however, that they may originate from distinct but contiguous brain
regions of the left hemisphere. In some epileptic patients, neurosurgeons insert a
panoply of electrodes right on the cortical surface in order to improve the spatial
localization of the recordings by avoiding the deformation of electric responses
by the skull. Truett Allison, Gregory McCarthy, and their colleagues at Yale
University have exploited this situation to accurately record the responses of ven-
tral occipito-temporal areas to different categories of visual stimuli such as
words, digits, pictures of objects, and pictures of faces. Their results demonstrate

Figure 8,6. Intracranial electrodes reveal a very fine specialization of the ventral occipito-tempo-
ral region for the visual recognition of different categories of stimuli. The cortex underlying site 1

responds to letter strings (whether they spell words or not), but not to faces. A neighboring elec-

trode at site 2 deviates only during the presentation of Arabic digits, but not of faces or letter-

strings. (Redrawn from Allison et al. 1994; copyright © 1994 by Oxford University Press.)
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an extreme specialization. Occasionally, an electrode shows an electric deviation
to words exclusively, while a second electrode one centimeter away reacts only to
Arabic digits, and a third only to faces (Figure 8.6). These highly specific respons-
es, which appear in less than 200 milliseconds, confirm that a whole collection of
visual detectors, grouped according to their preferred stimuli, covers the bottom
surface of the visual cortex.

Around 150 milliseconds, then, a mosaic of specialized visual areas recog-
nizes the shape of numerical symbols. At that point, however, the brain has not
yet recovered their meaning. It is only around 190 milliseconds that one sees a
first indication that numerical quantity is being encoded. The distance effect sud-
denly emerges on electrodes located over the inferior parietal cortex. Digits that
are close to 5, and therefore more difficult to compare, generate an electric
potential of a greater amplitude than digits that are far from 5. The effect is seen
over both hemispheres, although it is stronger on the right-hand side. It thus
takes only 190 milliseconds for the brain to activate the "networks of number
sense" that rest on the inferior parietal sectors of both hemispheres. Detailed
analyses show that the electrical distance effect has a similar topography for
Arabic digits and for number words. This confirms that the inferior parietal
region is not concerned with the notation in which numbers are presented, but
rather with their abstract magnitude.

Further along in our computer animation, we reach the time at which the
programming of the motor response begins. An important voltage difference
emerges on the electrodes located over the premotor and motor areas of both
hemispheres. When subjects prepare to respond with the right hand, a negative
potential appears over left-hemisphere electrodes; conversely, when they get
ready for a left-hand response, it is the right-hand side of the scalp that turns neg-
ative (remember that the left motor cortex controls the movements of the right
half of the body, and vice versa). This lateralized readiness potential first appears
as early as 250 milliseconds after the digit first appears on screen, and it reaches
its maximum around 330 milliseconds. By that time, number comparison must
have been completed because the larger or smaller answer is already available. It
thus takes between a quarter and a third of a second to recognize the visual shape
of a digit and access its quantitative meaning.

On average, the subject's response occurs around 400 milliseconds, after an
additional time lag during which the muscles contract and the subject actually
executes the selected response. Yet nothing precludes continuing the analysis
beyond this point. In fact, a very interesting electric event occurs right after the
motor response. Even in a task as elementary as digit comparison, we occasional-
ly make mistakes. Most errors are due to an incorrect anticipation of the
response and are immediately detected and corrected. Event-related potentials
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betray the origin of this correction. Immediately following an error, a negative
electric signal of great intensity suddenly pops up over the electrodes at the front
of the skull. No such signal is found following a correct response. Hence, this
activity must reflect the detection or attempted correction of the error. Its topog-
raphy suggests a generator located within the anterior cingulate cortex, a cere-
bral area involved in the attentional control of actions and in the inhibition of
unwanted behavior. Its response is so fast—less than 70 milliseconds after press-
ing the wrong key—that it cannot be due to feedback from sense organs.
Furthermore, in my experiment no feedback was provided as to whether a
response was or was not correct. The anterior cingulate cortex is thus activated in
an endogenous manner whenever subjects detect that the action they are current-
ly performing does not match the response they intend to give.

Let me stress again that all the events I have just described—number identifi-
cation, access to magnitude information, comparison, response selection, execu-
tion of the motor gesture, and detection of potential errors—occur within half a
second. Information passes from one cerebral area to the next with remarkable
speed. At present, only electro- and magnetoencephalography provide an oppor-
tunity of following this exchange in real time.

Understanding the Word "Eighteen"

Let us consider another example of the speed of numerical information process-
ing in the human brain. Take a look at the words EIGHTEEN and EINSTEIN. A
fraction of a second suffices to notice that the first is a numeral and the second a
famous physicist. It is equally easy to notice that EXECUTE is a verb, ELE-
PHANT an animal, and EKLPSGQI a meaningless string of letters. What cere-
bral areas are involved in the categorization of words of an arbitrary appearance,
but with radically different meanings? Could the recording of event-related
potentials reveal the activation of areas implicated in the representation of word
meaning? And would the inferior parietal cortex be activated during the mere
reading of the word eighteen, even if no calculation is required?

When volunteers pay attention to the semantic category to which words
belong, scalp-recorded potentials show a remarkable sequence of cerebral activa-
tion. Initially, visual areas of the left hemisphere are equally activated by the print-
ed strings EIGHTEEN, EINSTEIN, or EKLPSGQI. After about a quarter of a
second, however, posterior visual areas discriminate actual words from meaning-
less strings of letters that do not obey the normal rules of word formation in
English. Slightly later, around 300 milliseconds after the word appeared on screen,
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different categories of words also begin to diverge. Once more, numerals such as
EIGHTEEN produce an electrical wave form localized in the left and right inferi-
or parietal cortex—as if the brain had to recreate a quantitative representation of
their location on the number line in order to check that these are indeed numbers.

Other word categories, by contrast, activate very different cerebral regions.
Verbs, animals, and famous people all cause an extended activation of the left
temporal region, which has been long-suspected of playing a special role in the
representation of word meaning. Yet subtle variations appear across categories.
Most notably, the names of famous persons—whether EINSTEIN, CLINTON,
or BACH—are the only stimuli to activate the inferior temporal region, which
other experiments have targeted in the recognition of familiar faces. Several other
recent experiments suggest that this is not an isolated finding. Many categories of
words—animals, tools, verbs, color words, body parts, numerals, and so on—
have been found to rely on distinct sets of regions spread throughout the cortex.
In each case, to determine the category to which a word belongs, the brain seems
to activate in a top-down manner the cerebral areas that hold nonverbal informa-
tion about the meaning of that word.

Numerate Neurons

In spite of its major contributions, electroencephalography remains an indirect
and imprecise method. Tens of thousands of neurons must be activated synchro-
nously before their electrical effect becomes detectable on the scalp. Thus, neuro-
scientists continue to dream of a technique that would let them examine the
temporal pattern of activity of a single neuron in the human brain, as is routinely
done with animals. To some extent, however, this technique is already available.
Occasionally, electrodes are implanted directly into the human cortex—but the
technique is so invasive that it is justified only under very exceptional circum-
stances. In some patients suffering from intractable epilepsy, neurosurgery is
needed to remove the abnormal brain tissue from which the seizures originate.
Implanting intracranial electrodes is still the best way of pinpointing the exact
location of that tissue. The method consists of inserting thin needles, each with
multiple electrical recording sites, deep within the cortex and subcortical nuclei.
These electrodes are often left in place for several days in order to gather sufficient
data about the recurring epileptic fits. With the patient's consent, nothing pre-
cludes taking advantage of this setting to study neural information processing in
the human brain. Through the implanted electrodes, one can directly record elec-
tric activity in the brain while the patient reads words or performs simple calcula-
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Figure 8.7. A neuron from the human parietal cortex responds selectively during number process-

ing. The arrow indicates the time of presentation of Arabic digit Ior2. The intervals during

which the firing frequency deviates significantly from baseline are shown in black. Neuronal activ-

ity lasts longer when the subject adds the digit to a running total than when he merely reads it

aloud. (After Abdullaev and Melnichuk 1996. Courtesy Y. Abdullaev.)

tions. Depending on the characteristics of the electrode, one measures the aver-
age activity of only a few cubic millimeters of cortex, or even of a single neuron.

At the brain research center in Saint Petersburg, Yalchin Abdullaev and Kons-
tantin Melnichuk thus recorded the activity of several single neurons in the
human parietal cortex of a patient performing arithmetic and linguistics tasks. In
one condition, a series of digits appeared on a screen, and the patient had to com-
pute their running total; this was contrasted to a control situation in which the
patient merely had to read the same digits aloud. In a second condition, numbers
such as 54 and 7 had to be added or subtracted; again, the control consisted of
reading one of the two numbers aloud. Finally, the third task, which had nothing
to do with arithmetic, consisted in deciding whether a letter string such as house
or torse is a valid English word or not.

The results were clear-cut. In both hemispheres, inferior parietal neurons
fired only when numbers were presented. Most neurons also discharged more
during calculation than during the mere reading of numbers. However, the right
parietal cortex contained a few neurons whose firing frequency increased even
during the reading of digits 1 and 2. When the subject was reading, these neurons
fired for only a brief interval after the onset of the digit, from 300 to 500 millisec-
onds. But when the subject was adding or subtracting, activity lasted up to 800
milliseconds after the visual presentation (Figure 8.7).
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Cellular recording thus provides direct support for the inferences we've drawn
from the methods of neuropsychology, positron emission tomography, and elec-
troencephalography. As soon as we have to manipulate numerical quantities
mentally, the neural circuits of the inferior parietal cortex play an essential and
very specific role.

Of course, the scattered experiments that have been reported in this chap-
ter represent the very beginning of brain imaging. Tools for visualizing the
active human brain have been around only for the last few years. Even within
the domain of arithmetic, dozens of issues remained unexplored. Do parietal
neurons respond specifically to certain numbers? Is the inferior parietal region
organized topographically, with increasingly large numerical magnitudes system-
atically mapping to distinct patches of cortex? Do addition, subtraction, and com-
parison recruit distinct circuits? Does their organization vary with age, education
in mathematics, or talent for mental calculation? To which other regions does the
inferior parietal area project, and how does it communicate with the areas
involved in identifying and naming words and Arabic numerals?

So little is known about this vast domain that our list of open questions could
go on and on. With the new brain imaging tools now available, our scientific
explorations of the human brain are really just beginning. From neural circuit to
mental computation, from single neurons to complex arithmetic functions, cog-
nitive neuroscience has begun to weave increasingly tighter links among brain
regions, revealing a more complex and more intriguing picture than we could
have imagined. We have only caught the first few glimpses of how neural tissue
can become, in the words of Jean-Pierre Changeux and Alain Connes, "matter for
thought." Stay tuned, as the next ten years of brain research are most likely to
yield many more exciting insights about that special organ that makes us human.



What Is a
Number?

A mathematician is a machine for turning coffee into theorems.
Anonymous

What is a number, that a man may know it, and a man, that he may
know a number?" This question, magnificently formulated by Warren
McCulloch in 1965, is one of the oldest issues in the philosophy of sci-

ence—one of those that Plato and his disciples regularly explored on the benches

of the first academy twenty-five centuries ago. I often wonder how the great

philosophers of the past would have welcomed the recent data from neuro-

science and cognitive psychology. What dialogues would the images of positron

emission tomography have inspired in Platonists? What drastic revisions would
the experiments on neonate arithmetic have imposed on the English empiricist

philosophers? How would Diderot have received the neuropsychological data
that demonstrates the extreme fragmentation of knowledge in the human brain?

What penetrating insights would Descartes have had if he had been fed with the

rigorous data of contemporary neuroscience instead of the flights of fancy of
his time?

We are close to the end of our exploration into arithmetic and the brain. Now
that we have a better grasp of how the human brain represents and manipulates
numbers, perhaps we should summarize to what extent these empirical data

2 3 1

Chapter 9
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affect our understanding of the brain and of mathematics. How does the brain
acquire mathematics? What is the nature of mathematical intuition, and can one
improve it? What are the relations between mathematics and logic? Why is math-
ematics so efficient in the physical sciences? These are not just the academic
ruminations of philosophers hidden in their ivory towers. The answers we give to
them have a profound impact on our educational policies and research programs.
Piaget's constructivism and Bourbaki's austere rigor have left their marks on our
schools. Will such trenchant educational theories ever give way to more serene
and better optimized teaching methods, based on a genuine understanding of
how the human brain does mathematics? Only a thorough consideration of the
neuropsychological bases of mathematics may move us closer to achieving that
crucial goal.

Is the Brain a Logical Machine?

What sort of machine is the human brain, that it can give birth to mathematics?
Warren McCulloch thought he knew part of the answer. Being a mathematician
himself, he was eager to understand "how such a thing as mathematics could
have seen the light." As early as 1919, he moved toward the study of psychology
and later neurophysiology, with the personal conviction that the brain is a "logi-
cal machine." In 1943, in an influential article coauthored with Walter Pitts, he
stripped neurons of their complex biological reactions and reduced them to
two functions: summing their inputs and comparing this sum to a fixed thresh-
old. He then demonstrated that a network made up of many such interconnected
units can perform calculations of an arbitrary complexity. In computer science
jargon, such a network has the computational power of a Turing machine—a
simple formal device, invented by the brilliant British mathematician Alan Turing
in 1937, which captures the essential operations at work in computers for read-
ing, writing, and transforming digital data according to mechanical operations.
McCulloch's work thus showed that any operation that can be programmed on a
computer can also be performed by an adequately wired network of simplified
neurons. In a nutshell, he proclaimed, "A nervous system can compute any com-
putable number."

McCulloch thus followed in the footsteps of George Boole who, in 1854, had
set out as a research program for himself "to investigate the fundamental laws of
those operations of the mind by which reasoning is performed, to give expression
to them in the symbolic language of a calculus, and upon this foundation to
establish the science of logic and construct its method."



What Is a Number? 233

Boole is the inventor of "Boolean" logic, which describes how the binary
values true and false, denoted by 1 and 0, should be combined in logical computa-
tions. Today, Boolean algebra is seen as belonging to mathematical logic or to
computer science. But Boole himself considered his research as a central contri-
bution to psychology—an Investigation of the Laws of Thought, as his book was
titled.

The metaphor of the brain as a computer had now acquired immense popu-
larity, not only with the general public, but even among specialists in cognitive
science. It lies at the heart of the so-called "functionalist" approach to psychology,
which advocates studying the algorithms of the mind without caring about the
workings of the brain. A classical functionalist argument stresses that any digital
algorithm computes exactly the same result regardless of whether it runs on a
supercomputer or on a pocket electronic calculator. Does it matter, then, that the
computer is made of silicon and the brain of nerve cells? For functionalists, the
software of the mind is independent of the hardware of the brain—and the
mathematical results of Alonzo Church and Alan Turing guarantee that all
functions that are computable by a human mind can also be computed by a
Turing machine or a computer. In 1983, Philip Johnson-Laird went as far as to
state that "the physical nature [of the brain] places no constraints on the pattern
of thought," and that as a consequence the brain-computer metaphor "need nev-
er be supplanted."

Is the brain really nothing more than a computer or a "logical machine"?
Does its logical organization explain our mathematical abilities, and should it be
studied independently of its neural substrate? I will not surprise you much if I
confess that I suspect that functionalism provides too narrow a perspective on the
relations between mind and brain. On purely empirical grounds, the brain com-
puter metaphor simply does not provide a good model of the available experi-
mental data. The preceding chapters abound in counterexamples that suggest
that the human brain does not calculate like a "logical machine." Rigorous calcu-
lations do not come easily to Homo sapiens. Like so many other animals, humans
are born with a fuzzy and approximate concept of number that has little in com-
mon with the digital representation of computers. The invention of a numerical
language and of exact calculation algorithms belongs to the recent cultural histo-
ry of humanity—and in several respects, it is an unnatural evolution. Though
our culture has invented logic and arithmetic, our brain has remained surprising-
ly refractory even to the simplest algorithms. By way of proof, one merely needs
to consider the difficulty with which children assimilate arithmetic tables and cal-
culation rules. Even a calculating prodigy, after years of training, takes tens of
seconds to multiply two six-digit numbers—a thousand to a million times slower
than the most sluggish personal computer.
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The inadequacy of the brain-computer metaphor is almost comical. In do-
mains in which the computer excels—the faultless execution of a long series of
logical steps—our brain turns out to be slow and fallible. Conversely, in domains
in which computer science meets its most serious challenges—shape recognition
and attribution of meaning—our brain shines by its extraordinary speed.

At the level of the neural circuits themselves, comparing the brain to a "logi-
cal machine" does not stand up to scrutiny. Each neuron implements a biological
function considerably more complex than the simple logical addition of its inputs
(although McCulloch and Pitts's formal neurons sometimes provide a useful
approximation to real neurons). Above all, real networks of neurons depart from
the rigorous assembly of transistors in the electronic chips of modern comput-
ers. Although it is technically possible to assemble formal neurons to build up
logical functions, as shown by McCulloch and Pitts, this is not how the central
nervous system works. Logical gates are not primitive operations of the brain. If
one had to look for a "primitive" function in the nervous system, it would per-
haps be the ability of a nerve cell to recognize an elementary "shape" in its inputs
by weighing the neuronal discharges it receives from thousands of other units.
The recognition of approximate shapes is an elementary and immediate property
of the brain, while logic and calculation are derived properties, accessible only to
the brain of a single, suitably educated species of primate.

In all fairness, it should be said that many functionalist psychologists do not
adhere to the simplistic equation "brain = computer." Their position is more
subtle. They do not necessarily identify the brain with any of the serial types of
computers that we currently use; but they merely conceive of it as an information-
processing device. According to them, psychology should be exclusively concerned
with the characterization of the transformations that cerebral modules apply to
the information they receive. Even if these transformation algorithms are not
understood yet, and even if no extant computer is able to implement them, brain
functions in principle will eventually be reduced to them. That prospect makes
the study of neurons, synapses, molecules, and other properties of the mind's
"wetware" irrelevant to psychology.

Even this more subtle brand of functionalism remains questionable, however.
Not that it is wrong to study the algorithms of the brain or the activities of
humans at a purely behavioral level—one can learn a lot about a machine by
determining the fundamental principles on which it is based. But doesn't one
make even more progress when one discovers how the machine itself is built?
The history of science abounds with examples where the understanding of the
physical or biological substrate of a phenomenon has caused a sudden advance in
the understanding of its functional properties. The discovery of the molecular
structure of DNA, for instance, has radically modified our conception of the
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"algorithms" of heredity that were discovered years before by Mendel. Likewise,
new brain imaging tools are currently revolutionizing our knowledge of cerebral
functioning. Wouldn't it be absurd if psychologists were to listen to the function-
alists and dismiss these tools as unimportant for our understanding of cognition?
As a matter of fact, the vast majority of them, far from from turning their backs
on neuroscience research, view it as making a vital contribution to the progress
of experimental and clinical psychology.

The functionalists' insistence on the computable aspects of cerebral process-
ing also has another unfortunate consequence. It leads them to neglect other
facets of brain function that do not easily fit within the formalism of computer
science. This may well be the main reason why cognitive psychology has largely
left aside the complex issue of the role of emotions in intellectual life. Yet emo-
tions surely should have a place in any theory of cerebral function, including our
present quest for the neural bases of mathematics. Anxiety about mathematics
can paralyze children to such an extent that they become unable to acquire even
the simplest arithmetical algorithms. Conversely, a passion for numbers can turn
a shepherd into a calculating prodigy. In a recent book called Descartes' Error, the
neuropsychologist Antonio Damasio demonstrates how emotions and reason are
tightly linked, to the extent that a lesion of the neural systems responsible for the
internal evocation of emotions can have a dramatic impact on the ability to make
rational decisions in everyday life. The brain-computer metaphor does not easily
put up with such observations, which suggest that cerebral function is not con-
fined to the cold transformation of information according to logical rules. If we
are to understand how mathematics can become the object of so much passion
or hatred, we have to grant as much attention to the syntax of emotions as to the
computations of reason.

Analog Computations in the Brain

The pitfalls of the brain-computer metaphor have not escaped the sagacity of all
computer scientists. As early as 1957, John Von Neumann, one of the founding
fathers of computer science, said in The Brain and the Computer, "The language of
the brain [is] not the language of mathematics." Let us not reduce machines to
solely digital computers, he recommended. Advanced calculations can be per-
formed by analog machines that ignore mathematical logic entirely. A machine is
said to be "analog" when it performs computations by manipulating continuous
physical quantities analogous to the variables being represented. In Robinson
Crusoe's calculator, for instance, the level of water in the accumulator serves as
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an analog of number, and addition of water is analogous to numerical addition.
Von Neumann had the remarkable insight that the brain is probably a mixed ana-
log-digital machine in which symbolic and analogical codes are seamlessly inte-
grated. Whatever limited abilities our brain exhibits for logic and mathematics
may just be the visible result of neural architecture that follows nonlogical rules.
In Von Neumann's own words,

When we talk about mathematics, we may be discussing a secondary language,
built upon the primary language truly used by the central nervous system.
Thus, the outward forms of our mathematics are not absolutely relevant from
the point of view of evaluating what is the mathematical or logical language
truly used by the central nervous system.

The way in which we compare numbers indeed suggests that we are more
similar to an analog machine than to a digital computer. Anyone who writes
computer programs knows that the operation of number comparison belongs to
the basic set of instructions of the processor. A single calculation cycle of con-
stant duration, often shorter than one microsecond, is enough to assess whether
the content of one register is smaller than, equal to, or larger than the content
of another. Not so for the brain. In Chapter 3 we saw that an adult takes almost
half a second to compare two numbers or any two physical quantities. While a
few transistors can implement comparison in an electronic chip, the nervous sys-
tem has to recruit vast networks of neurons and invest a lot of time to reach the
same result.

Moreover, the comparison method that we use is not so easily implemented
in a digital computer. Remember that we suffer from a distance effect: It system-
atically takes us more time to compare two close numbers such as 1 and 2 than
two distant numbers such as 1 and 9. In modern computers, by contrast, compar-
ison time is constant regardless of the numbers involved.

Inventing a digital algorithm that reproduces the distance effect is something
of a challenge. In a Turing machine, a simple way of coding numbers consists in
repeating the same symbol n times. Thus, 1 is represented by an arbitrary charac-
ter a, 2 by the string aa, and 9 by aaaaaaaaa. But the machine can process such
strings only character by character. Hence most comparison algorithms respond
in a time proportional to the smaller of the two numbers to be compared, totally
independent of the distance between them. One can program a Turing machine
to count how many symbols distinguish the two numbers, but the simplest algo-
rithm of this kind takes increasingly less time as the numbers to be compared get
increasingly close, contrary to what holds for the brain.
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Binary notation is another simple way of representing numbers in a digital
computer. Each number is then coded as a string of bits made up of Os and Is. For
instance, 6 is coded as 110, 7 as 111, and 8 as 1000. With an internal code of this
kind, however, things take a strange turn: Comparison takes more time for num-
bers 6 and 7, whose last bit is different, than for the numbers 7 and 8, which differ
outright from the first bit. Needless to say, this singular mathematical property
finds no echo in psychological observations, which indicate, on the contrary, that
6 and 7 are slightly easier to compare than 7 and 8.

Thus, the distance effect, a fundamental characteristic of number processing
in the human brain, is not a property that holds of most digital computers. Are
there any other types of machines for which a distance effect comes about spon-
taneously? The answer is yes. Almost any analog machine can model the distance
effect. Consider the simplest of them: a pair of scales. Place a one-pound weight
on the left plate and a nine-pound weight on the right. As soon as you let go, the
scales immediately tip to the right, indicating that 9 is larger than 1. Now replace
the nine pounds with two pounds and start the experiment again. The scales now
hit the right side after a greater length of time. Hence scales, just like brains, find
it more difficult to compare 2 and 1 than 9 and 1. Indeed, the time that it takes
scales to tip over is inversely proportional to the square root of the difference in
weight, a mathematical function that fits nicely with the time it takes us to com-
pare two numbers.

Thus, our mental comparison algorithm can be likened to a pair of scales that
"weigh up numbers." The arithmetic abilities of our brain are more easily simu-
lated by an analog machine such as scales than by a digital program. One might
object that it is always possible to simulate the behavior of an analog device on a
digital computer. True enough (although some chaotic physical systems cannot
be simulated with absolute precision). But the principles on which the computer
is designed then do not capture any significant regularity about the brain: The
properties of the system are fully defined by the physical system that one chooses
to emulate.

The peculiar way in which we compare numbers thus reveals the original
principles used by the brain to represent parameters in the environment, such as
a number. Unlike the computer, it does not rely on a digital code, but on a con-
tinuous quantitative internal representation. The brain is not a logical machine,
but an analog device. Randy Gallistel has expressed this conclusion with remark-
able simplicity: "In effect, the nervous system inverts the representational conven-
tion whereby numbers are used to represent linear magnitudes. Instead of using
number to represent magnitude, the rat [like the Homo sapiens!] uses magnitude
to represent number."
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When Intuition Outruns Axioms

Yet another argument militates against the hypothesis that the brain does mathe-

matics like a "logical machine." Since the end of the nineteenth century, several
mathematicians and logicians—Dedekind, Peano, Frege, Russell, and Whitehead
among others—have attempted to found arithmetic on a purely formal basis.
They designed elaborate logical systems whose axioms and syntactic rules

attempted to capture our intuition of what numbers are. However, this formalist
approach came up against serious problems that are quite revealing about how
difficult it can be to reduce brain function to a formal system.

The simplest of these formalizations of arithmetic was provided by Peano's
axioms. Sparing you any mathematical jargon, these axioms essentially reduce to
the following statements:

• 1 is a number.
« Every number has a successor, denoted as Sn or simply as n+1.
• Every number but 1 has a predecessor (assuming that we consider only the

positive integers).
• Two different numbers cannot have the same successor.

• Axiom of recurrence: If a property is verified for number 1, and if the fact
that it is verified for n implies that it is also verified for its successor n+1,

then the property is true of any number n.

These axioms may seem complex and gratuitous. All they do, however, is for-
malize the very concrete notion of the chain of integers 1,2,3,4, and so on. They
satisfy our intuition that this chain has no ending: Any number can always be fol-
lowed by another number that differs from all the preceding ones. Finally they
also allow for a very simple definition of addition and multiplication: Adding a
number n means repeating the successor operation n times, and multiplying by n

means repeating the addition operation n times.
But this formalism has one major problem. While Peano's axioms provide a

good description of the intuitive properties of integers, they also allow for other
monstrous objects that we are reluctant to call "numbers," but that satisfy the
axioms in every respect. These are called "nonstandard models of arithmetic,"
and they raise considerable difficulties for the formalist approach.

It is difficult, in only a few lines, to explain what a nonstandard model looks
like, but for present purposes a simplified metaphor should suffice. Let us start
with the set of usual integers 1, 2, 3, and so on, and let us add other elements that
we can picture as being "larger than all other numbers." To the numerical half-
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line formed by the numbers 1, 2, 3, and so on, let us for instance add a second line
spreading toward infinity on both sides:

To prevent any confusion, we denote the members of this second number
line with a star. Thus -3*, -2*, -1*, 0*, 1*, 2*, 3*, and so on, are all members of
this second set. Now let us form the reunion of standard integers and these new
elements, and call it the set of "artificial integers":

Set A truly deserves its name. It is a chimera that does not correspond to any-
thing intuitive. Its elements are the last things that we would want to call "num-
bers." And yet they verify all of Peano's axioms (with the exception of the axiom
of recurrence—this is where my metaphor is oversimplified). Indeed, there is an
artificial number 1 that is not the successor of any other artificial number, and
every artificial number has a unique and distinct successor in A. The successor of
1 is 2, that of 2 is 3, and so on; and likewise the successor of -2* is -1*, that of -1*
is 0*, that of 0* is 1*, and so on. From a purely formal point of view, then, set A
provides a fully adequate representation of the set of integers as defined by
Peano's axioms—it is a "nonstandard model of arithmetic." In fact, there are an
infinity of such models, many of them much more exotic than A.

Nonstandard models are so extravagant that in order to provide a more vivid
idea of what they imply, I have to resort to a somewhat farfetched metaphor. In
the last century, the classification of animal species seemed well established until
a "monster" was discovered in remote Australia: the platypus. Zoologists had not
foreseen that some of the criteria they used to classify birds—species having a
beak, laying eggs—would also apply to this strange mammal that nobody in the
world would want to call a bird. Likewise, Peano could not anticipate that his def-
inition of integers would also apply to mathematical monsters that depart radi-
cally from usual numbers.

The discovery of the platypus led zoologists to revise some of their princi-
ples. Why wouldn't mathematicians follow their lead? Couldn't they keep adding
more axioms to Peano's list until the revised formal system applied to the "true"
integers and only to them? We are now reaching the heart of the paradox. A
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powerful theorem in mathematical logic, first proved by Skolem and deeply relat-
ed to Godel's famous theorem, shows that the addition of new axioms can never
abolish nonstandard models. As far as they are willing to push the axiomatic for-
malism, mathematicians will constantly continue to meet new "platypuses"—
monsters that will verify all imaginable formal definitions of integers without
being identical to them.

In all truth, matters are a trifle more complex because only a certain version
of Peano's axioms that mathematicians call "first-order Peano arithmetic" suffers
from this infinite expansion of nonstandard models. Yet this version is generally
thought to be the best axiomatization of number theory that we have. Thus our
best system of axioms fails to capture, in a unique way, our intuitions of what
numbers are. The rules behind these axioms seems to fit the "natural" integers
tightly; but we later discover that very different objects, which I have called "arti-
ficial integers," also verify them. Thus, our "number sense" cannot be reduced to
the formal definition provided by these axioms. As was noted by Husserl in his
Philosophy of Arithmetic, providing a univocal formal definition of what we call
numbers is essentially impossible: The concept of number is primitive and unde-
finable.

This conclusion seems implausible. We all have a clear idea of what we mean
by an integer, so why should formalizing it be so difficult? Yet all our attempts to
provide a formal definition go nowhere. We might try to state, for instance, that
integers are obtained by counting: just start with 1 and repeat Peano's "successor"
operation as many times as needed. As many times as needed ... ? But surely not
more than a finite number of times; otherwise we would again end up in the
strange land of artificial integers! The circularity of the definition becomes obvi-
ous: Numbers are what one obtains by repeating the successor operation a finite
number of times.

In Science and Method, Poincare took great pleasure in ridiculing his contempo-
raries' attempts to define integers through set theory. "Zero is the number of ele-
ments in the null class," the mathematician Louis Couturat proposed. 'And what
is the null class?" Poincare replied. "It is that class containing no element."
Poincare later charged: "Zero is the number of objects that satisfy a condition
that is never satisfied. But as never means in no case I do not see that any great
progress has been made." Or again, in a biting response to Couturat, who defined
1 as the number of elements of a set in which any two elements are identical: "I
am afraid that if we asked Couturat what two is, he would be obliged to use the
word one."

Ironically, any five-year-old has an intimate understanding of those very
numbers that the brightest logicians struggle to define. No need for a formal defi-
nition: We know intuitively what integers are. Among the infinite number of
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models that satisfy Peano's axioms, we can immediately distinguish genuine inte-
gers from other meaningless and artificial fantasies. Hence, our brain does not
rely on axioms.

If I insist so strongly on this point, it is because of its important implications
for education in mathematics. If educational psychologists had paid enough
attention to the primacy of intuition over formal axioms in the human mind, a
breakdown without precedent in the history of mathematics might have been
avoided. I am referring to the infamous episode of "modern mathematics,"
which has left scars in the minds of many schoolchildren in France as well as in
many other countries. In the 1970s, under the pretext of teaching children greater
rigor—an undeniably important goal!—a new mathematical curriculum was
designed that imposed a heavy burden of obscure axioms and formalisms on
pupils. Behind this educational reform stood a theory of knowledge acquisition
that was based on the brain-computer metaphor and that viewed children as little
information-processing devices largely devoid of preconceived ideas and capable
of ingurgitating any axiomatic system. A group of elite mathematicians known
as "Bourbaki" reasoned that teachers should start right away by introducing chil-
dren to the most fundamental formal bases of mathematics. Indeed, why let
pupils lose precious years solving simple, concrete arithmetic problems, when
abstract group theory summarizes all such knowledge in a much more concise
and rigorous way?

The previous chapters clearly expose the fallacies behind that line of reason-
ing. The child's brain, far from being a sponge, is a structured organ that acquires
facts only insofar as they can be integrated into its previous knowledge. It is well
adapted to the representation of continuous quantities and to their mental
manipulation in an analogical form. Evolution never prepared it, however, for the
task of ingurgitating vast systems of axioms, nor of applying lengthy symbolic
algorithms. Thus, quantitative intuition primes over logical axioms. As John
Locke astutely observed as early as 1689 in his Essay on Human Understanding:
"Many a one knows that 1 and 2 are equal to 3 without having thought on any
axiom by which it may be proved."

Thus, bombarding the juvenile brain with abstract axioms is probably useless.
A more reasonable strategy for teaching mathematics would appear to go
through a progressive enrichment of children's intuitions, leaning heavily on
their precocious understanding of quantitative manipulations and of counting.
One should first arouse their curiosity with some amusing numerical puzzles and
problems. Then, little by little, one may introduce them to the power of symbol-
ic mathematical notation and the shortcuts it provides—but at this stage, great
care should be taken never to divorce such symbolic knowledge from the child's
quantitative intuitions. Eventually, formal axiomatic systems may be introduced.
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Even then, they should never be imposed on the child, but rather they should
always be justified by a demand for greater simplicity and effectiveness. Ideally,
each pupil should mentally, in condensed form, retrace the history of mathemat-
ics and its motivations.

Platonists, Formalists, and Intuitionists

We are now ready to discuss McCulloch's second question: "What is a number,
that a man may know it?" Twentieth-century mathematicians have been pro-
foundly divided over this fundamental issue concerning the nature of mathemat-
ical objects. For some, traditionally labeled "Platonists," mathematical reality
exists in an abstract plane, and its objects are as real as those of everyday life. Such
was the conviction of Hardy, Ramanujan's discoverer: "I believe that mathemati-
cal reality lies outside us, that our function is to discover or observe it, and that the
theorems which we prove, and which we describe grandiloquently as our "cre-
ations," are simply our notes of our observations."

An astonishingly similar profession of faith is found in the French mathemati-
cian Charles Hermite: "I believe that the numbers and functions of analysis are
not the arbitrary product of our spirits; I believe that they exist outside of us with
the same character of necessity as the objects of objective reality; and we find or
discover them and study them as do the physicists, chemists, and zoologists."

These two quotations are drawn from Morris Kline's book Mathematics: The
Loss of Certainty, which contains dozens of similar excerpts. Platonism, indeed, is
a prevalent belief system among mathematicians, and I am convinced that it accu-
rately describes their introspection: They really have the feeling of moving in an
abstract landscape of numbers or figures that exists independently of their own
attempts at exploring it. Yet should this feeling be taken at face value, or should
we just consider it as a psychological phenomenon that needs to be explained? For
an epistemologist, a neurobiologist, or a neuropsychologist, the Platonist position
seems hard to defend—as unacceptable, in fact, as Cartesian dualism is as a scien-
tific theory of the brain. Just as the dualist hypothesis faces insurmountable diffi-
culties in explaining how an immaterial soul can interact with a physical body,
Platonism leaves in the dark how a mathematician in the flesh could ever explore
the abstract realm of mathematical objects. If these objects are real but immateri-
al, in what extrasensory ways does a mathematician perceive them? This objec-
tion seems fatal to the Platonist view of mathematics. Even if mathematicians'
introspection convinces them of the tangible reality of the objects they study, this
feeling cannot be more than an illusion. Presumably, one can become a mathe-
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matical genius only if one has an oustanding capacity for forming vivid mental
representations of abstract mathematical concepts—mental images that soon
turn into an illusion, eclipsing the human origins of mathematical objects and
endowing them with the semblance of an independent existence.

Turning their back on Platonism, a second category of mathematicians, the
"formalists," view the issue of the existence of mathematical objects as meaning-
less and void. For them, mathematics is only a game in which one manipulates
symbols according to precise formal rules. Mathematical objects such as numbers
have no relation to reality: They are defined merely as a set of symbols that sat-
isfy certain axioms. According to David Hilbert, head of the formalist movement,
instead of stating that only one line can go through any two points, one could
say that only one table goes through any two glasses of beer—this substitution
would not change any of the theorems of geometry! Or according to Wittgen-
stein's famous statement: 'All mathematical propositions mean the same thing,
namely nothing."

There is certainly some truth in the formalists' idea that a large part of math-
ematics is a purely formal game. Indeed, numerous questions in pure mathemat-
ics have arisen from what, at first sight, may seem to be fanciful ideas. What
would happen if that axiom were replaced by its negation? Or if one turned this
"plus" sign into a "minus" sign? Or if taking the square root of a negative number
were suddenly allowed? Or if there were integers larger than all others?

And yet I do not believe that the whole of mathematics can thus be reduced to
an exploration of the consequences of purely arbitrary choices. Though the for-
malist position may account for the recent evolution of pure mathematics, it does
not provide an adequate explanation of its origins. If mathematics is nothing
more than a formal game, how is it that it focuses on specific and universal cate-
gories of the human mind such as numbers, sets, and continuous quantities?
Why do mathematicians judge the laws of arithmetic to be more fundamental
than the rules of chess? Why did Peano go to great pains to propose a few well-
chosen axioms rather than a series of haphazard definitions? Why did Hilbert
himself select only a restricted subset of elementary numerical reasonings to
serve as a tentative foundation for the rest of mathematics? And, above all, why
does mathematics apply so tightly to the modeling of the physical world?

I believe that most mathematicians do not just manipulate symbols according
to purely arbitrary rules. On the contrary, they try to capture in their theorems
certain physical, numerical, geometrical, and logical intuitions. A third category
of mathematicians is thus that of the "intuitionists" or "constructivists," who
believe that mathematical objects are nothing but constructions of the human
mind. In their view, mathematics does not exist in the outside world, but only in
the brain of the mathematician who invents it. Neither arithmetic, nor geometry
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nor logic predate the emergence of the human species. It would even be conceiv-
able for another species to develop radically different mathematics, as Poincare or
Delbriick have suggested. Mathematical objects are fundamental, a priori cate-
gories of human thought that the mathematician refines and formalizes. The
structure of our mind forces us, in particular, to parse the world into discrete
objects; this is the origin of our intuitive notions of set and of number.

The founders of intuitionisrn have stressed the primitive and irreductible
nature of numerical intuition. Poincare spoke about "this intuition of pure num-
ber, the only intuition which cannot deceive us," and he confidently proclaimed
that "the only natural objects of mathematical thought are the integers." For
Dedekind, too, number was an "immediate emanation from the pure laws of
thought."

As demonstrated by the mathematics historian Morris Kline, the roots of
intuitionisrn go back to Descartes, Pascal, and of course to Kant. Although Des-
cartes championed the systematic questioning of one's beliefs, he did not go as
far as to challenge the obviousness of mathematics. He confessed in his Medi-
tations: "I counted as the most certain the truths which I conceived clearly as
regards figures, numbers, and other matters which pertain to arithmetic and
geometry, and in general to pure and abstract mathematics."

Pascal extended that view even further: "Our knowledge of the first princi-
ples, such as space, time, motion, number, is as certain as any knowledge we
obtain by reasoning. As a matter of fact, this knowledge provided by our hearts
and instinct is necessarily the basis on which our reasoning has to build its conclu-
sions."

For Kant, finally, number belonged to the synthetic a priori categories of the
mind. More generally, Kant stated that "the ultimate truth of mathematics lies in
the possibility that its concepts can be constructed by the human mind."

Among the available theories on the nature of mathematics, intuitionism
seems to me to provide the best account of the relations between arithmetic and
the human brain. The discoveries of the last few years in the psychology of arith-
metic have brought new arguments to support the intuitionist view that neither
Kant nor Poincare could have known. These empirical results tend to confirm
Poincare's postulate that number belongs to the "natural objects of thought," the
innate categories according to which we apprehend the world. What, indeed, did
the preceding chapters reveal about this natural number sense?

• That the human baby is born with innate mechanisms for individuating
objects and for extracting the numerosity of small sets.

• That this "number sense" is also present in animals, and hence that it is
independent of language and has a long evolutionary history.
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• That in children, numerical estimation, comparison, counting, simple addi-
tion and subtraction all emerge spontaneously without much explicit
instruction.

• That the inferior parietal region of both cerebral hemispheres hosts neu-
ronal circuits dedicated to the mental manipulation of numerical quantities.

Intuition about numbers is thus anchored deep in our brain. Number appears
as one of the fundamental dimensions according to which our nervous system
parses the external world. Just as we cannot avoid seeing objects in color (an
attribute entirely made up by circuits in our occipital cortex, including area V4)
and at definite locations in space (a representation reconstructed by occipitopari-
etal neuronal projection pathways), in the same way numerical quantities are
imposed on us effortlessly through the specialized circuits of our inferior parietal
lobe. The structure of our brain defines the categories according to which we
apprehend the world through mathematics.

The Construction and Selection of Mathematics

Although the empirical data from neuropsychology seem to provide support for
intuitionism, in a form simiarto. that advocated by Poincare, this position should
be clearly dissociated from an extreme form of intuitionism, the constructivism
ardently defended by the Dutch mathematician Luitzen Brouwer. In his zeal to
found mathematics on pure intuitions alone, Brouwer went too far, according to
many of his colleagues. He took exception to certain logical principles that were
very frequently used in mathematical demonstrations but that he felt did not con-
form to any simple intuition. In particular he was led to reject, for reasons that
cannot possibly be explained in full here, the application to infinite sets of the law
of excluded middle—an innocent-looking principle of classical logic that states
that any meaningful mathematical statement is either true or false. The rejection
of that postulate led to the development of a new branch of mathematics called
constructivist mathematics.

It is certainly not for me to decide whether classical mathematics or Brou-
wer's constructivist mathematics provides the most coherent and productive
pathways for research. The decision ultimately belongs to the mathematical com-
munity, and psychologists must confine themselves to the role of observer.
Nevertheless, in my opinion both theories are compatible with the broader
hypothesis that mathematics consists in the formalization and progressive refine-
ment of our fundamental intuitions. As humans, we are born with multiple intu-
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itions concerning numbers, sets, continuous quantities, iteration, logic, and the
geometry of space. Mathematicians struggle to reformalize these intuitions and
turn them into logically coherent systems of axioms, but there is no guarantee
that this is at all possible. Indeed, the cerebral modules that underlie our intu-
itions have been independently shaped by evolution, which was more concerned
with their efficiency in the real world than about their global coherence. This
may be the reason why mathematicians differ in their choice of which intuitions
to use as a foundation and which to relinquish. Classical mathematics are based
on an intuition of the dichotomy between truth and falsehood (and as such, as
noted by Brouwer, they indeed run the risk of going beyond our intuitions about
finite and infinite sets). Brouwer, on the contrary, adopts the primacy of finite
constructions or reasonings as a fundamental principle. In the final analysis, his
version of mathematics, although it is sometimes called "intuitionism," is certain-
ly not more intuitive than others—it is merely based on a partially distinct set of
intuitions.

In this framework, then, what remains to be explained is how, on the basis of
the innate categories of their intuition, rnathematicans elaborate ever more
abstract symbolic constructions. In line with the French neurobiologist Jean-
Pierre Changeux, I would like to suggest that an evolutionary process of con-
struction followed by selection is at work in mathematics. The evolution of
mathematics is a well-attested fact of history. Mathematics is not a rigid body of
knowledge. Its objects and even its modes of reasoning have evolved over the
course of many generations. The edifice of mathematics has been erected by tri-
al and error. The highest scaffoldings are sometimes on the verge of collapsing,
and reconstruction follows demolition in a never-ending cycle. The foundations
of any mathematical construction are grounded on fundamental intuitions such
as notions of set, number, space, time, or logic. These are almost never ques-
tioned, so deeply do they belong to the irreducible representations concocted by
our brain. Mathematics can be characterized as the progressive formalization of
these intuitions. Its purpose is to make them more coherent, mutually compati-
ble, and better adapted to our experience of the external world.

Multiple criteria seem to govern the selection of mathematical objects and
their transmission to future generations. In pure mathematics, noncontradiction,
but also elegance and simplicity, are the central properties that warrant the
preservation of a mathematical construction. In applied mathematics, an impor-
tant criterion is added: the adequacy of mathematical constructs to the physical
world. Year after year, mathematical constructions that are self-contradictory,
inelegant, or useless are ruthlessly tracked down and eliminated. Only the
strongest stand the proof of time.
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We first met an example of how selection takes place in mathematics in
Chapter 4, when we examined the evolution of number notations. Our remote
ancestors probably named only the numbers 1, 2, and 3. Then a series of inven-
tions successively emerged: body-pointing numeration, number names up to ten,
and eventually a complex number syntax based on addition and multiplication
rules; and in writing, notch-based notation, additive numeration, and eventually
positional notation in base 10. Each step saw a small but consistent improvement
in the readability, compactness, and expressive powers of numerals.

A similar evolutionary history could be written for the continuum of real
numbers. In Pythagoras's time, only integers and ratios of two integers were con-
sidered to be numbers. Then came the stupefying discovery of the noncomrnen-
surability of the diagonal of the square: V2 cannot be expressed as the ratio of
two integers. Soon, an infinity of such irrational quantities was constructed. For
more than 20 centuries, mathematicians struggled to find a formalism adequate
for them. There were false starts—the infinitesimals—apparent solutions that
were actually riddled with contradictions, and several returns to square one.
Finally, only a century ago, Dedekind's work began to provide a satisfactory defi-
nition of the set of real numbers.

According to the evolutionary viewpoint that I defend, mathematics is a
human construction and hence a necessarily imperfect and revisable endeavor.
This conclusion may seem surprising. Such an aura of purity surrounds mathe-
matics, so often heralded as the "temple of rigor." Mathematicians themselves
marvel at the power of their discipline—and rightly so. But don't we all tend to
forget that five millennia of efforts have presided over its birth?

Mathematics is often called the only science that is cumulative—its results,
once acquired, are never questioned or revised. One look into past mathematics
books, however, provides many counterexamples to this view. Monumental vol-
umes have become obsolete with the advent of general methods for solving poly-
nomial equations of the second, third, and fourth degree. A demonstration,
which is once found valid, may be judged inadequate or downright false by the
next generation of mathematicians. Isn't it amazing, for instance, that the infinite
sum 1-1 + 1-1 + 1 . . . , infinitely alternating the addition and subtraction of 1, para-
lyzed mathematicians for more than a century? Today, any university student: can
prove that this sum has no meaningful value (it oscillates between 0 and 1). Yet in
1713 a mathematician as talented as Leibniz proved—incorrectly, of course—that
this infinite sum was equal to 1/2

If you find it hard to believe that faulty reasoning can remain hidden from the
best minds for decades, take the time to work on the problem depicted in Figure
9.1. It is proved in a few steps, that any two lines meet at a right angle! The demon-
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Figure 9.1. The human brain is ill-adapted to the long chains of logical steps required in mathe-

matical demonstrations. In the following proof, although each step seems correct, the final conclu-

sion is obviously wrong since it states that any angle is a right angle! Can you spot the error?

Demonstration: Let ABCD be a quadrilateral -with two equal sides AB and CD and with a

right angle 6 = , BAD. The angle 6' = Z. ADC is arbitrary—yet we shall prove that it is always

equal to the right angle 8.

Draw L, the mediator of AD and L', the mediator of BC. Call O the intersection of L and L'.

By construction, O is equidistant from A and D (OA=OD), and also from B and C (OB=OC).

Since AB=CD, the triangles OAB and ODC have equal sides and are therefore similar. Hence their

angles are equal: L BAO = Z. ODC = a.

Since OAD is an isosceles triangle, L DAO = L ODA = p.

Hence 6 = L BAD = L BAO - L DAO = a - b; and 5' = L ADC = L ODC - Z ODA =

a - b; which implies that 6 = 5'. QED.

Where is the error? See the answer on page 253.

stration is wrong, of course, but the error is so subtle that it can be sought for
several hours without success. What to say, then, of the recent demonstrations
that sometimes cover hundreds of pages in mathematical journals? Academies
throughout the world have received dozens of false demonstrations of Fermat's
last theorem; even the first convincing proof by Andrew Wiles contained an
incorrect statement whose rectification took him almost a year of effort. And
what are we to think of the newer demonstrations that call for the exhaustive
examination of billions of combinations by a computer? Some mathematicians
object to this practice, for they fear that we have no proof that the computer pro-
gram is errorless. To this day, then, the edifice of mathematics is not fully stabi-
lized. We have no guarantee that some of its pieces will not, like Leibniz's infinite
sum, be thrown out a few generations from now.
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Nobody can deny that mathematics is an extraordinarily difficult activity. I
have attributed this difficulty to the architecture of the human brain, which is
poorly adapted to long chains of symbolic operations. As children, we already
face severe difficulties learning multiplication tables or the multidigit calculation
algorithms. Images of cerebral activity during repeated subtractions of digit 3
show intense bilateral activation of parietal and frontal lobes. If an operation as
elementary as subtraction already mobilizes our neuronal network to such an
extent, one can imagine the concentration and the level of expertise needed to
demonstrate a novel and truly difficult mathematical conjecture! It is not so sur-
prising, then, that error and imprecision so often mar mathematical construc-
tions. Only the collective activity of tens of thousands of mathematicians,
accumulated and refined over centuries, can explain their present success. This
conclusion was aptly captured by the French mathematician Evariste Galois:
"[This] science is the work of the human mind, which is destined rather to study
than to know, to seek the truth rather than to find it."

The Unreasonable Effectiveness of Mathematics

To affirm that arithmetic is the product of the human mind does not imply that it
is arbitrary and that, on some other planet, we might have been born with the
idea that 1 + 1=3. Throughout phylogenetic evolution, as well as during cerebral
development in childhood, selection has acted to ensure that the brain constructs
internal representations that are adapted to the external world. Arithmetic is such
an adaptation. At our scale, the world is mostly made up of separable objects that
combine into sets according to the familiar equation 1 + 1 =2. This is why evolution
has anchored this rule in our genes. Perhaps our arithmetic would have been rad-
ically different if, like cherubs, we had evolved in the heavens where one cloud
plus another cloud was still one cloud!

The evolution of mathematics provides some insights into what still stands
out as one of mathematics' greatest mysteries: its ability to represent the physical
world with a remarkable precision. "How is it possible that mathematics, a prod-
uct of human thought that is independent of experience, fits so excellently the
objects of physical reality?" Einstein asked in 1921. The physicist Eugene Wigner
spoke of the "unreasonable effectiveness of mathematics in the natural sciences."
Indeed, mathematical concepts and physical observations sometimes seem to fit
as tightly as pieces in a jigsaw puzzle. Witness Kepler and Newton discovering
that bodies subjected to gravity follow smooth trajectories in the shape of
ellipses, parabolas, or hyperbolas—the very curves according to which Greek
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mathematicians, two millennia earlier, classified the various intersections of a
plane and a cone. Witness the equations of quantum mechanics predicting the
mass of the electron to the umpteenth decimal. Witness Gauss's bell-shaped
curve matching, to near perfection, the observed distribution of the fossil radia-
tion originating from the "Big Bang."

The effectiveness of mathematics raises a fundamental problem for most
mathematicians. From their point of view, the abstract world of mathematics
should not have to adjust so tightly to the concrete world of physics, because the
two are purportedly independent. They perceive the applicability of mathematics
as an unfathomable mystery, which leads some of them to mysticism. For Wig-
ner, "the miracle of the appropriateness of the language of mathematics to the
formulation of the laws of physics is a wonderful gift which we neither understand
nor deserve." According to Kepler, "the principal object of all research on the
external world should be to uncover its order and rational harmony which were
set by God and which he revealed to us in the language of mathematics." Or listen
to Cantor: "The highest perfection of God lies in the ability to create an infinite
set, and its immense goodness leads Him to create it." Ramanujan follows on the
same tracks: 'An equation for me has no meaning unless it expresses a thought of
God" (in all these quotations, the emphasis is mine). These statements are not just
relics of nineteenth-century mysticism. One version of the anthropic principle,
recently adopted by famous contemporary astrophysicists, affirms that the uni-
verse was created by design so that humans would eventually emerge from it and
be able to understand it.

Was the universe purposely designed according to mathematical laws? It
would be foolish to pretend that I can settle an issue that clearly belongs to meta-
physics, one that Einstein himself saw as the universe's ultimate mystery. One can
at least wonder, however, why eminent scientists feel the need to assert, in the
very context of their research, their faith in a universal design and their submis-
sion to nonobservable entities, regardless of whether they call them "God" or
"the mathematical laws of the universe." In biology, the Darwinian revolution
taught us that the finding of organized structures that seem designed for a clear
purpose need not point to the works of a Great Architect. The human eye, seem-
ingly a miracle of organization, results from millions of years of blind mutations
sorted by natural selection. Darwin's central message is that each time we see evi-
dence for design in an organ such as the eye, we have to ask ourselves whether
there ever was a designer or whether selection alone could have shaped it in the
course of evolution.

The evolution of mathematics is a fact. Science historians have recorded its
slow rise, through trial and error, to greater efficiency. It may not be necessary,
then, to postulate that the universe was designed to conform to mathematical
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laws. Isn't it rather our mathematical laws, and the organizing principles of our
brain before them, that were selected according to how closely they fit the struc-
ture of the universe? The miracle of the effectiveness of mathematics, dear to
Eugene Wigner, could then be accounted for by selective evolution, just like the
miracle of the adaptation of the eye to sight. If today's mathematics is efficient, it
is perhaps because yesterday's inefficient mathematics has been ruthlessly elimi-
nated and replaced.

Pure mathematics does seem to raise a more serious problem for the evolu-
tionary view I am defending. Mathematicians claim that they pursue some math-
ematical issues only for beauty's sake, with no applications in sight. Yet decades
later their results are sometimes found to fit some hitherto unsuspected problem
in physics like a glove. How can one explain the extraordinary adequacy of the
purest products of the human mind to physical reality? In an evolutionary frame-
work, perhaps pure mathematics should be compared to a rough diamond, raw
material that has not yet been submitted to the test of selection. Mathematicians
generate an enormous amount of pure mathematics. Only a small part of it will
ever be useful in physics. There is thus an overproduction of mathematical solu-
tions from which physicists select those that seem best adapted to their discipline
—a process not unlike the Darwinian model of random mutations followed by
selection. Perhaps this argument makes it seem somewhat less miraculous that,
among the wide variety of available models, some wind up fitting the physical
world tightly.

In the final analysis, the issue of the unreasonable effectiveness of mathemat-
ics loses much of its veil of mystery when one keeps in mind that mathematical
models rarely agree exactly with physical reality. Kepler notwithstanding, planets
do not draw ellipses. The earth would perhaps follow an exact elliptic trajectory if
it were alone in the solar system, if it was a perfect sphere, if it did not exchange
energy with the sun, and so on. In practice, however, all planets follow chaotic
trajectories that merely resemble ellipses and are impossible to calculate precisely
beyond a limit of several thousand years. All the "laws" of physics that we arro-
gantly impose on the universe seem condemned to remain partial models,
approximate mental representations that we ceaselessly improve. In my opinion,
the "theory of everything," the current stuff of physicists' dreams, is unlikely
ever to be attained.

The hypothesis of a partial adaptation of mathematical theories to the regu-
larities of the physical world can perhaps provide some grounds for a reconcilia-
tion between Platonists and intuitionists. Platonism hits upon an undeniable
element of truth when it stresses that physical reality is organized according to
structures that predate the human mind. However, I would not say that this orga-
nization is mathematical in nature. Rather, it is the human brain that translates it
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into mathematics. The structure of a salt crystal is such that we cannot fail to per-

ceive it as having six facets. Its structure undeniably existed way before humans
began to roam the earth. Yet only human brains seem able to attend selectively to

the set of facets, perceive its numerosity as 6, and relate that number to others in
a coherent theory of arithmetic. Numbers, like other mathematical objects, are

mental constructions whose roots are to be found in the adaptation of the human
brain to the regularities of the universe.

There is one instrument on which scientists rely so regularly that they some-
times forget its very existence: their own brain. The brain is not a logical, univer-

sal, and optimal machine. While evolution has endowed it with a special
sensitivity to certain parameters useful to science, such as number, it has also
made it particularly restive and inefficient in logic and in long series of calcula-

tions. It has biased it, finally, to project onto physical phenomena an anthro-
pocentric framework that causes all of us to see evidence for design where only

evolution and randomness are at work. Is the universe really "written in mathe-
matical language," as Galileo contended? I am inclined to think instead that this is

the only language with which we can try to read it.



Appendix

Correction of the "proof" in Figure 9.1. Figure 9.1 was deliberately drawn incorrectly. Though the

triangles OAB and ODC are indeed similar, their relations are quite different from those suggested

by Figure 9.1 Point O, the intersection of L and L', is actually much higher (see the above figure).

Hence it is true that 8=a-b, but 8'=2-a-|b. These relations obviously afford no conclusion as to

the value of angle 8'.
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