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Abstract 

McCloskey, M., 1992. Cognitive mechanisms in numerical processing: evidence from acquired 
dyscalculia. Cognition, 44: 107-157. 

This article discusses cognitive neuropsychological research on acquired dyscalculia 
(i.e., impaired numerical processing resulting from brain damage), surveying 
issues o f  current interest, and illustrating the ways in which analyses of  acquired 
deficits can contribute to an understanding of  normal processing. I first review the 
logic whereby inferences concerning normal cognition are drawn from patterns of  
impaired performance. I then consider research exploring the general functional 
architecture o f  the cognitive numerical processing mechanisms, and finally turn to 
studies aimed at probing the internal structure and functioning of  individual 
processing components. 

When the brain is damaged through accident or disease, deficits in cognitive 
functioning frequently result. Traditionally, research on these "acquired" deficits 
has focused on defining clinical syndromes (constellations of co-occurring symp- 
toms), and relating these syndromes to damage in particular brain areas. Recent- 
ly, however,  researchers have come to realize that systematic analyses of acquired 
cognitive deficits can also provide a basis for inferences about normal cognitive 
processes. This article discusses impairments in processing of numerical informa- 
tion (collectively referred to as acquired dyscalculia), exploring the insights 
offered by these impairments into the structure and functioning of normal 
numerical processing mechanisms. 
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ASSUMPTIONS AND METHODS IN COGNITIVE NEUROPSYCHOLOGICAL 
RESEARCH 

The logic whereby data from brain-damaged patients are brought to bear on 
issues concerning normal cognition is somewhat different from the logic underly- 
ing cognitive research with normal subjects. Hence it is worthwhile to consider 
the basic assumptions motivating cognitive neuropsychological research, and the 
methodological implications of these assumptions. For more detailed discussions, 
see Caramazza (1984, 1986), Caramazza and McCloskey (1988), McCloskey and 
Caramazza (1988), and Shallice (1979). 

Fundamental assumptions 

The basic premise of cognitive neuropsychological research is straightforward: 
the impaired cognitive performance of a brain-damaged patient reflects the 
functioning of a previously normal cognitive system with one or more components 
damaged. This premise incorporates two related assumptions. The first is that 
brain damage may have selective effects, disrupting some components of a 
cognitive system while leaving other components intact. The second assumption is 
that cognitive systems disrupted by brain damage do not undergo a functional 
reorganization in which a cognitive architecture substantially different from the 
normal architecture is created. 

Given these assumptions, a pattern of impaired performance may be brought 
to bear on issues concerning normal cognition by asking: what must the normal 
cognitive system be like in order that damage to the system could result in just 
this performance pattern? In this way inferences may be drawn about the general 
functional architecture of a cognitive system (i.e., the major processing compo- 
nents and the interactions among them), and about the internal structure and 
functioning of individual components (i.e., the specific computations carried out, 
and the nature of the representations manipulated). 

For example, Warrington (1982)drew conclusions about the general architec- 
ture of cognitive numerical processing mechanisms from the case of patient DRC, 
a physician who sustained left parietal-occipital damage when a blood vessel in 
his brain ruptured. DRC could read and write numbers without difficulty; he was 
able to judge rapidly and accurately which of two numbers was larger; and he 
could give reasonable estimates of numerical attributes (e.g., how tall is the 
average English woman?). Testing of basic arithmetic, however, revealed a 
deficit: in tasks requiring speeded responses DRC was much slower and somewhat 
less accurate than control subjects, even for very simple problems (e.g., 5 + 7). 
Questioned about his difficulties in solving simple addition and subtraction 
problems, DRC stated that he often knew the approximate answer to a problem, 
but no longer knew the exact answer. DRC claimed, however, that he understood 
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arithmetic operations, and that he could work out answers to problems by 
counting (e.g., solving 8 + 4 by counting up 4 from 8). Consistent with these 
claims, DRC was able to give sensible definitions of addition, subtraction, 
multiplication, and division, and performed well in untimed tests of arithmetic 
problem-solving. 

Warrington (1982) interpreted these results as evidence for a distinction 
between number knowledge and arithmetic knowledge. Given this distinction, she 
argued, DRC's performance could be explained at a general level by assuming 
that his arithmetic knowledge was disrupted while his number knowledge re- 
mained intact. Warrington (1982) further suggested that DRC's performance 
motivates a distinction within arithmetic knowledge between knowledge of arith- 
metic operations, and knowledge of arithmetic facts. DRC's knowledge of 
arithmetic operations was apparently intact, as evidenced by his ability to define 
the operations, and to solve problems in untimed testing. In contrast, DRC was 
impaired in retrieving stored knowledge of arithmetic "table" facts such as 
8 + 4 = 12. As a consequence, the facts had to be worked out (e.g., by counting), 
leading to impairment on speeded tasks (although allowing for good performance 
on untimed tasks). 

Single-patient studies 

As Warrington's (1982) study illustrates, the appropriate methodology in 
cognitive neuropsychological research is that of the single-patient study 
(Caramazza, 1986; Caramazza & McCloskey, 1988; McCloskey & Caramazza, 
1988). In studies with normal subjects, data are typically averaged over groups of 
subjects, in order to minimize the noise (i.e., measurement error) in the data 
brought to bear on theoretical issues. Averaging over subjects requires the 
assumption that the subject group is homogeneous with respect to the cognitive 
mechanisms under investigation. Given this assumption, any differences among 
subjects in patterns of performance may be considered noise, and averaging 
serves to produce "cleaner" measures than those from individual subjects. Thus, 
averaging over subjects is simply an expedient method for reducing error of 
measurement. 

This methodological expedient is not available in studies of brain-damaged 
patients, because it cannot be assumed that groups of patients are homogeneous 
with respect to the cognitive mechanisms of interest. One may assume that 
premorbidly (i.e., prior to brain damage) the patients in a group were homoge- 
neous, in any circumstances where an assumption of homogeneity would be 
justified for normal subjects. However, one cannot assume that damage to the 
cognitive mechanisms under investigation is uniform across patients; brain dam- 
age may disrupt a cognitive system in a variety of different ways. Therefore, 
differences in performance patterns among brain-damaged patients cannot be 
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dismissed as noise; these differences may reflect, at least in part, differences in 
forms of impairment. 

Accordingly, averaging data over brain-damaged patients is inappropriate, 
unless the patients show the same pattern of performance in all tasks presented in 
a study. However, when testing and data analyses are carried out at a level of 
detail adequate to address issues of current interest in cognitive science, two or 
more patients will rarely show the same performance pattern across all tasks. In 
most instances, therefore, single-patient studies provide the only valid basis for 
inferences about normal cognition. 

Generalizing from single-patient studies 

Drawing conclusions from a single-patient study is, at least implicitly, a 
two-step process. First, one interprets the obtained pattern of performance by 
jointly postulating some characteristics of the patient's previously normal cogni- 
tive mechanisms, and functional damage to these mechanisms that would lead to 
the observed pattern of performance. Then, on the assumption that the cognitive 
mechanisms under investigation are shared by some population of normal in- 
dividuals, the inferences about the patient's previously normal mechanisms are 
generalized to that population. For example, Warrington's (1982) argument from 
DRC's performance that knowledge of arithmetic facts should be distinguished 
from knowledge of arithmetic operations was presumably intended to apply not 
solely to DRC, but more broadly to the population of normal educated adults. 

A concern often expressed regarding generalization from single-patient studies 
is that normal cognitive mechanisms may vary across individuals, so that infer- 
ences about a patient's premorbid cognitive system may not in fact generalize to 
people at large. Although the possibility of individual differences must indeed be 
borne in mind, the problems raised by this possibility are neither particularly 
serious, nor unique to single-subject studies. 

The use of a single-case methodology does not mean that a theory of normal 
processing is developed on the basis of data from a single patient, any more than 
a theory is developed on the basis of data from a single experiment with normal 
subjects. Although empirical reports often present findings from only one or two 
patients, data from multiple single-patient studies are ultimately brought to bear 
in formulating and evaluating theories. If, then, there is substantial individual 
variation in the normal cognitive mechanisms under investigation, this variation 
should be signalled by a failure of results from various patients to converge in the 
conclusions they suggest about normal processing mechanisms. 

For the most part, potential individual differences may be treated in the same 
manner in cognitive neuropsychological research as in research involving groups 
of normal subjects. When individual differences seem unlikely a priori, and 
available data provide no indication of such differences, conclusions may reason- 
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ably be generalized to the population at large. In circumstances where individual 
differences appear more likely, however, caution should be exercised in generaliz- 
ing from a single-patient study (as well as in averaging over normal subjects)) 

In general a single-patient study may be considered roughly comparable - in 
evidential weight and in limitations - to a single experiment with a group of 
normal subjects. That is, a single-patient study provides a valid basis for infer- 
ences about normal cognitive mechanisms; however, just as converging results 
from multiple experiments with normal subjects provide stronger evidence than 
results from a single experiment, converging findings from multiple single-patient 
studies are stronger than data from a single study. 

COGNITIVE NEUROPSYCHOLOGICAL RESEARCH ON ACQUIRED 
DYSCALCULIA 

The literature on acquired dyscalculia is extensive, dating back at least to the 
early years of this century (Lewandowsky & Stadelmann, 1908; for recent 
reviews, see Boiler & Grafman, 1983; Levin & Spiers, 1985; Spiers, 1987). 
However, as in other areas of neuropsychological research, many of the available 
studies were either not directed at elucidating the structure of normal processing 
mechanisms, or were not conducted in light of current cognitive theory. Accord- 
ingly, much of the literature on dyscalculia is of limited value for purposes of 
drawing inferences about normal numerical processing. For example, a substantial 
proportion of the studies report only results averaged, or otherwise aggregated, 
over patients. Further, in some of the studies presenting findings from individual 

1One type of individual variation does require special consideration in single-subject studies. 
Suppose that although nearly all individuals in a population are essentially the same with respect to the 
cognitive mechanisms under investigation, a few individuals are qualitatively different. In a group 
study of normal subjects, the inclusion of a small proportion of atypical subjects will probably have 
little effect on group averages, and the averages will accurately reflect the structure and functioning of 
the cognitive mechanisms shared by the vast majority of the population. On the other hand, if a 
single-subject study is undertaken with one of the highly atypical individuals, then incorrect conclu- 
sions about the population may be drawn. In cognitive neuropsychological research the specific 
concern is that a patient's cognitive system may have been atypical prior to brain damage. (The 
possibility that a patient may have an unusual form of damage is not a concern, because one seeks to 
generalize not conclusions about forms of damage, but rather conclusions about patients' premorbid 
cognitive systems.) Although specific to single-subject studies, problems associated with highly atypical 
cognitive systems are probably not especially serious. These problems may be minimized by taking 
care in selecting subjects (e.g., by avoiding patients for whom there is evidence of developmental 
cognitive deficits). Further, given the assumption that atypical cognitive systems are present in only a 
small proportion of the normal population, it seems likely that only a small proportion of single-case 
studies would involve patients with atypical premorbid systems. The results of these studies would 
presumably diverge in their implications from the bulk of the available studies, and, like anomalous 
results in any area of scientific research, would presumably have little influence on theory de- 
velopment. 
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patients, the discussions are brief and anecdotal, so that crucial details about 
procedures and results cannot be ascertained. 

Fortunately,  recent years have seen a growing interest in dyscalculia among 
cognitive neuropsychologists seeking to develop and evaluate models of normal 
processing, and a substantial number  of carefully conducted and systematically 
repor ted single-patient studies have recently appeared in the literature (e.g., 
Cohen & Dehaene,  1991; Ferro & Botelho, 1980; McCloskey, Sokol, & Good- 
man,  1986; Warrington, 1982). These studies, as well as a few strong efforts from 
earlier years (e.g., Singer & Low, 1933), provide a basis for exploring several 

basic issues concerning normal numerical processing. 
In this article I at tempt to highlight issues of current interest in cognitive 

neuropsychological research on acquired dyscalculia, and to illustrate some of the 
ways in which analyses of acquired deficits can contribute to an understanding of 
normal numerical processing. I first consider research exploring the general 
functional architecture of the cognitive numerical processing mechanisms, and 
then turn to studies aimed at probing the internal structure and functioning of 
individual processing components.  

FUNCTIONAL ARCHITECTURE OF COGNITIVE NUMERICAL 

PROCESSING MECHANISMS 

What is the nature of the mental machinery underlying basic numerical abilities? 
A simple model proposed by McCloskey, Caramazza, and Basili (1985) provides 
a useful starting point in addressing this question. 

A model of numeral processing and calculation 

The  McCloskey et al. (1985) model considers at a general level the cognitive 
mechanisms mediating comprehension and production of arabic and verbal 
numerals,  2 and execution of simple calculations. 

Numeral-processing mechanisms 

As illustrated in Figure 1, the model posits functionally independent  numeral 

comprehension and numeral production mechanisms. Numeral comprehension 

Zl use the term numeral to refer to a symbol or set of symbols representing a number. Arabic 
numerals are numerals in digit form (e.g., 56), and verbal numerals are numerals in the form of words 
(e.g., fifty-six), whether the words are spoken or written. Finally, I denote verbal numerals in spoken 
and written form as spoken verbal numerals and written verbal numerals, respectively. In using the 
term numerals I depart from the terminology of McCloskey et al. (1985), who refer to arabic and 
verbal numbers. However, the present nomenclature is helpful in maintaining the distinction between 
numbers, and symbols representing numbers. 
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mechanisms convert numerical inputs into internal semantic representations for 
use in subsequent cognitive processing, such as performing calculations. Numeral 
production mechanisms translate internal representations of numbers into the 
appropriate form for output. 

The internal semantic representations are assumed to specify in abstract form 
the basic quantities in a number,  and the power of ten associated with each. For 
example,  the arabic numeral comprehension process is assumed to generate from 
the stimulus 5030 the semantic representation {5} 10EXP3, {3} 10EXP1. The digits 
in braces (e.g., {5}) indicate quantity representations and 10EXPn indicates a 
power of 10 (e.g., 10EXP3 specifies 10 to the third power, or thousand).  Thus, 
{5}10EXP3, {3}10EXP1 indicates a number made up of five thousands and three 
tens. This particular notation is adopted merely to avoid confusion between 
internal semantic representations of numbers, and arabic or verbal numerals. The 
important  assumption is that the internal representations specify basic quantities 
and their associated powers of 10. (See Dehaene,  Dupoux, & Mehler,  1990, for a 
contrasting view of internal numerical representation.) 

In addition to distinguishing numeral comprehension and production mecha- 
nisms, the McCloskey et al. (1985) model further divides these mechanisms into 
components  for processing arabic numerals (i.e., numerals in digit form, such as 
362), and components  for processing verbal numerals (i.e., numerals in word 
form, such as three hundred sixty-two). For example, reading a price tag would 
implicate arabic numeral comprehension processes, whereas writing a check 
would involve both arabic and verbal numeral production processes. 3 

Within the arabic and verbal numeral comprehension and production compo- 
nents, a further distinction is drawn between lexical and syntactic processing 
mechanisms. Lexical processing involves comprehension or production of the 
individual elements in a numeral (e.g., the digit 3 or the word three), whereas 
syntactic processing involves processing of relations among elements (e.g., word 
order) in order  to comprehend or produce a numeral as a whole. For  example, 
translation of the verbal numeral six hundred forty into the semantic representa- 
tion (6} 10EXP2, {4} 10EXP1 would require lexical processing to generate internal 
representat ions for the words six, hundred, and forty (e.g., {6} 10EXP0, 10EXP2, 
and {4}10EXP1, respectively), as well as syntactic processing to determine that 
because hundred followed six in the stimulus numeral,  the quantity {6} should be 
associated with the power-of-ten marker  10EXP2 in the final semantic repre- 
sentation. 

3In referring to verbal numeral comprehension and production components, my colleagues and I 
did not intend to claim that the mechanisms for processing numbers in word form are necessarily 
separate from the mechanisms for processing language in general; this remains an open question. The 
approach we adopted was to describe cognitive mechanisms in terms of the role these mechanisms play 
in number processing and calculation, leaving open the question of whether some of the mechanisms 
are also involved in other cognitive processing. See pp. 152-153 for further discussion. 
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Finally, within the lexical processing components for verbal numeral com- 
prehension and production, the McCloskey et al. (1985) model distinguishes 
between phonological processing mechanisms for processing spoken number 
words and graphemic processing mechanisms for processing written number 
words. For example, spoken production of the word six would require retrieval of 
a phonological representation (i.e., /slks/) from a phonological output lexicon, 
whereas written production of this word would require retrieval of a graphemic 
representation (i.e., S-I-X) from a graphemic output lexicon. No phonological/ 
graphemic distinction is drawn for syntactic processing; the same syntactic pro- 
cessing mechanisms are assumed to underlie processing of both spoken and 
written verbal numerals. 

Calculation mechanisms 

Performing calculations requires, in addition to numeral comprehension and 
production, cognitive processes specific to arithmetic. In particular, the McClos- 
key et al. (1985) model posits components for comprehension of operation 
symbols (e.g., + ) and words (e.g., plus), retrieval of arithmetic "table" facts, 
and execution of calculation procedures. 

Consider, for example, the following problem: 

64 
x 59 

According to the McCloskey et al. (1985) model, processing of the operation sign 
(× )  would lead to activation of the multiplication procedure. This procedure, 
which provides an ordered plan for the solution of multiplication problems, would 
call first for processing of the digits in the rightmost column (i.e., 4 and 9). Thus, 
arabic numeral comprehension processes would be recruited to translate the digits 
into abstract internal representations. These representations, along with a repre- 
sentation of the arithmetic operation, would then be taken as input by the 
arithmetic fact retrieval process, which would return an abstract internal repre- 
sentation of the product (i.e., {3}10EXP1, {6}10EXP0). The multiplication 
procedure would then call for the ones portion of the product to be written in 
arabic form beneath the rightmost column of the problem. Thus, arabic numeral 
production mechanisms would translate the abstract representation {6}10EXP0 
into a representation of the digit 6, and general writing processes would produce 
the written output from this digit representation. Processing would continue in 
this fashion until all partial products had been computed. At this point the 
addition procedure would be called, and the partial products would be summed 
and written under control of this procedure. 
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Empirical evidence 

Studies demonstrating that some aspects of numeral-processing and calculation 
may be disrupted selectively provide support for many of the distinctions among 
processing components drawn by McCloskey et al. (1985), as the examples 
discussed in the following sections illustrate. 

Patterns of impaired numeral processing 

Selective impairment of numeral production. Benson and Denckla (1969) 
reported the case of a 58-year-old man with left hemisphere damage apparently 
resulting from a cerebrovascular accident, or CVA (i.e., disruption of blood flow 
through a cerebral artery, usually due to blockage or rupture of the vessel). When 
simple arithmetic problems (e.g., 4 + 5) were presented visually in arabic form or 
aurally in verbal form the patient consistently chose the correct answer from a 
multiple-choice list of arabic numerals. This result implies an ability to com- 
prehend the arabic numerals in the written stimulus problems and in the 
multiple-choice lists, as well as an ability to comprehend the spoken verbal 
numerals in the aurally presented problems. Further, the patient was able to point 
to the correct arabic numeral when a verbal numeral was dictated, again 
suggesting intact comprehension of arabic and spoken verbal numerals. 

On tasks requiring production of arabic or spoken verbal numerals, however, 
the patient was severely impaired. When asked to say or write the answer to 
simple arithmetic problems, he was often incorrect. For the problem 4 + 5, for 
example, he said "eight" and wrote "5" (but chose "9" from a multiple-choice 
list). The patient's excellent performance on multiple-choice arithmetic problems 
suggests that the errors on problems requiring written or spoken answers reflect 
an impairment in producing the responses, and not in comprehending the stimuli 
or in retrieving the relevant arithmetic table facts. Consistent with this conclusion, 
the patient made frequent errors when asked to write arabic numerals to dictation 
(e.g., stimulus "two hundred twenty-one," response 215), and when asked to read 
aloud arabic numerals. Given the above-described evidence of intact numeral 
comprehension, these numeral reading and writing errors are unlikely to be errors 
in comprehending spoken verbal stimuli (writing-to-dictation task) or arabic 
stimuli (reading task); rather, the errors presumably stem from deficits in 
production of Arabic and spoken verbal numerals. Thus, Benson and Denckla's 
(1969) patient shows a dissociation between comprehension (intact) and produc- 
tion (impaired) for both arabic and verbal numerals, supporting the assumption 
that numeral comprehension and numeral production mechanisms are functional- 
ly distinct. 

Selective impairment of syntactic processing in arabic numeral production. A 
more specific dissociation is apparent in results reported by Singer and Low 
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(1933). These researchers studied a 44-year-old man who suffered brain damage 
as a result of carbon monoxide poisoning. The patient's performance in produc- 
tion of arabic numerals revealed a dissociation in which lexical processing was 
intact but syntactic processing was impaired. In writing arabic numerals to 
dictation the patient was uniformly correct for 1- and 2-digit numerals. For larger 
numerals, the individual non-zero digits were consistently correct, but the re- 
sponses were of the wrong order of magnitude. For example, "two hundred 
forty-two" was written as 20042, and "two thousand five hundred" as 2000500. 

These errors apparently did not result from difficulty in comprehending the 
dictated stimuli, because the patient was invariably correct in judging which of 
two spoken verbal numerals was larger, and in selecting from a multiple-choice 
list the arabic numeral matching a spoken verbal numeral. Hence, the writing-to- 
dictation errors apparently reflected a deficit in arabic numeral production, and 
more specifically a syntactic processing deficit. The excellent performance for 1- 
and 2-digit numerals, and the consistent production of the correct non-zero digits 
in larger numerals, suggest that lexical processing mechanisms for arabic numeral 
production were intact: for each non-zero quantity in a number, the patient was 
able to retrieve the appropriate digit representation. However, syntactic process- 
ing was disrupted: the patient was impaired in arranging the non-zero digits into 
the proper positions and combining them with appropriately positioned place- 
holder O's to produce the correct arabic representation of the entire number. 

Patterns of impaired calculation 

Selective impairment of operation symbol comprehension. Ferro and Botelho 
(1980) described two Portuguese patients (AL and MA) with selective deficits in 
comprehension of written operation symbols (e.g., +, x).  When single- and 
multi-digit arithmetic problems were presented in written form both patients often 
performed (correctly) the wrong operation. For example, AL multiplied when 
presented with 721 + 36, obtaining the correct product 25,956. The fact that 
incorrect operations were performed correctly suggests that the patients were 
intact in comprehension and production of arabic numerals, in retrieval of 
arithmetic facts, and in execution of calculation procedures. Thus, the per- 
formance pattern suggests a deficit in comprehension of operation symbols, and 
indeed several tests of operation symbol comprehension revealed clear deficits in 
both patients. Interestingly, the operation comprehension deficit was specific to 
the written operation symbols: When arithmetic problems were presented aurally, 
the patients performed well, and in particular had no difficulty comprehending the 
spoken operation words "plus," "times," and so forth. 

Selective impairment of arithmetic fact retrieval. I have already discussed 
Warrington's (1982) study of DRC, which suggests that arithmetic fact retrieval 
may be selectively disrupted. A study speaking more specifically to the distinction 
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Figure 2. 
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Examples of  PS's fact retrieval errors on multi-digit multiplication problems. (A) In this 
problem PS retrieved 32 as the answer to 9 x 4, and 72 as the answer to 9 x 9. ( B) In this 
problem PS retrieved 54 as the answer to 7 x 9. 

between arithmetic fact retrieval and execution of calculation procedures has been 
reported by Sokol, McCloskey, Cohen, and Aliminosa (1991). Sokol et al. 
studied patient PS, a 40-year-old college-educated financial planner who had 
suffered a left hemisphere CVA. In single-digit multiplication PS was clearly 
impaired, erring on 451 of 2300 problems (20%). Her excellent performance on 
several numeral-processing tasks indicated that the multiplication errors could not 
be attributed to numeral comprehension or production deficits, and reflected 
instead a deficit in retrieving multiplication table facts. This fact retrieval deficit 
was also apparent when PS was asked to solve multi-digit multiplication problems, 
as the examples in Figure 2 illustrate. 

In execution of calculation procedures, however, PS was clearly intact. When 
solving the multi-digit problems she consistently carried out the appropriate 
single-digit fact retrievals (although not always successfully) in the appropriate 
order. Further, she dealt appropriately with partial products (e.g., writing the 
ones digit and carrying the tens digit, aligning the rows correctly), and executed 
the addition procedure appropriately when adding these products (although she 
occasionally erred in retrieval of addition facts). Thus, PS presented with a clear 
dissociation between retrieval of arithmetic facts (impaired) and execution of 
calculation procedures (intact). 

Additional mechanisms and alternative architectures 

The McCloskey et al. (1985) model reflects the view that in developing cognitive 
theories it is advantageous to begin with a simple, tightly constrained model. Such 
a model generates straightforward predictions, and provides a well-defined anchor 
point from which further theory development may proceed. Thus, the McCloskey 
et al. (1985) model postulates what might be considered a minimal repertoire of 
cognitive mechanisms for accomplishing Arabic and verbal numeral processing, 
and basic arithmetic. Further, the flow of information is tightly constrained - the 
various processing components are assumed to communicate via a single form of 
internal numerical representation. 
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This simple model raises several sets of issues concerning numerical processing. 
For example, one might ask how or whether the postulated cognitive architecture 
could be extended to encompass numerical processing not considered in the 
current model (e.g., comprehension and production of.roman numerals). How- 
ever, the issues I will focus on here concern the adequacy of the model's 
assumptions about the processes currently within its purview. Is the postulated 
cognitive architecture adequate to account for processing of arabic and verbal 
numerals, and basic arithmetic? Or is there instead a need to posit additional 
processing mechanisms, or perhaps even to adopt an entirely different theoretical 
framework? In the following discussion I first consider a proposal suggesting that 
additional mechanisms are needed, and then examine a view of numerical 
cognition radically different from the view reflected in the McCloskey et al. 
(1985) model. 

Asemantic transcoding alogorithms 

The McCloskey et al. (1985) model holds that numerical transcoding (i.e., 
translating from one numeral form to another, such as from arabic to verbal 
numerals) is accomplished by a comprehension process that converts the input 
form into an internal semantic representation, followed by a production process 
that converts the semantic representation into the output numeral form. For 
example, reading aloud an arabic numeral (e.g., 3020) is assumed to involve an 
arabic numeral comprehension process that converts the arabic numeral into an 
internal semantic representation (e.g., {3}10EXP3, {2)10EXP1), and then a 
verbal numeral production process that converts the semantic representation into 
a sequence of (phonological) number word representations (e.g., three thousand 
twenty). 

Deloche and Seron (1987) have suggested, however, that transcoding is 
accomplished by "asemantic" transcoding algorithms that translate from one 
numeral form to another without computing a semantic representation. In 
particular, they describe algorithms for arabic-to-verbal and verbal-to-arabic 
transcoding, and interpret transcoding errors in brain-damaged patients in terms 
of disruption to these algorithms (Deloche & Seron, 1982a, 1982b, 1984, 1987; 
Seron & Deloche, 1983, 1984). 

In evaluating the Deloche and Seron (1987) proposal it is important first to 
recognize that the question is not whether asemantic transcoding algorithms 
should be posited instead of the numeral comprehension and production processes 
assumed by McCloskey et al. (1985), but whether the transcoding algorithms 
should be postulated in addition to these numeral comprehension and production 
processes. Although Deloche and Seron (1987) focus exclusively on transcoding 
tasks in discussing numeral processing, transcoding is not the sole, or even the 



120 M. McCloskey 

primary, computational task that numeral processing mechanisms must accom- 
plish. In many if not most instances where people process numerals, the meaning 
of the numerals is centrally implicated. For example, when someone examines the 
arabic numeral on a price tag, the aim is not usually to read the numeral aloud, 
but rather to determine its meaning, in order to answer such questions as: is this a 
reasonable price for this product? Answering questions of this sort presumably 
requires a process that converts the arabic numeral on the price tag into an 
internal semantic representation. Similarly, in situations where numerals are 
spoken or written the process often begins with a to-be-expressed meaning, and 
not with an external numeral stimulus that is to be translated to a different form. 
Thus, regardless of how numeral transcoding operations are carried out, one must 
still postulate comprehension processes that convert numeral inputs into semantic 
representations, and production processes that convert semantic representations 
into arabic or verbal numerals. 

Therefore, the issue is whether there is reason to postulate algorithms dedi- 
cated specifically to translation of numerals from one form to another, when 
numeral comprehension and production processes sufficient to accomplish the 
translations must in any case be postulated for other reasons. In considering this 
issue it is important to note that arabic-to-verbal and verbal-to-arabic transcoding 
are not simple processes involving one-to-one translation of digits to words, or 
vice versa. The mapping between arabic and verbal numerals is quite complex. 
For example, in converting arabic to verbal numerals the same digit (e.g., 2) may 
map onto different number words (e.g., two, twelve, twenty) depending on where 
in the arabic numeral it appears. In some instances two digits (e.g., the 1 and 2 in 
12 or 12,000, but not 120) correspond to a single word (e.g., twelve). Further, O's 
in an arabic numeral have no verbal realization, unless they appear in isolation or 
to the right of a 1 in certain positions in a number (in which case the 1 and 0 are 
realized together as ten, as in 210 or 210,000, but not 2100). Finally, the 
transformation of arabic to verbal numerals requires the insertion of multiplier 
words (e.g., hundred, thousand) at appropriate points in the word sequence, 
although these words do not correspond to particular digits in the arabic numeral. 

Thus, it is not the case that simple and direct transcoding algorithms can be 
defined to shortcut a more laborious process of converting from an input numeral 
form to a semantic representation, and then from a semantic representation to an 
output numeral form. Rather, as Deloche and Seron's (1987) discussion illus- 
trates, the transcoding algorithms must be comparable in complexity to the 
numeral comprehension and production processes postulated by the McCloskey et 
al. (1985) model. Indeed, the arabic-to-verbal transcoding algorithm proposed by 
Deloche and Seron (1987; see also Cohen & Dehaene, 1991) is similar in many 
respects to the verbal numeral production algorithm sketched by McCloskey et al. 
(1985) and developed in more detail in McCloskey et al. (1986). 

Turning next to empirical motivation, DeloChe and Seron (1987) offer no 
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specific evidence that transcoding is accomplished by asemantic algorithms as 
opposed to numeral comprehension and production processes. They discuss 
various types of errors made by French brain-damaged patients in transcoding 
arabic numerals to French verbal numerals, and vice versa, suggesting that these 
errors can be interpreted in terms of disruption of the posited transcoding 
algorithms. However ,  the errors could also be interpreted by reference to 
disruption of numeral comprehension and production processes. For example, 
several of the error  types attributed to disruption of the arabic-to-verbal transcod- 
ing algorithm are interpreted by McCloskey et al. (1986) in terms of damage to a 
verbal numeral production process. Cohen and Dehaene (1991) present results 
from a patient who was impaired in arabic-to-spoken-verbal transcoding, and 
interpret  the patient 's performance in terms of an asemantic transcoding process. 
However ,  as discussed in a later section (pp. 142-145), the evidence they present 
is less than definitive. 

The hypothesis of asemantic transcoding clearly merits further investigation. In 
exploring this hypothesis it might be worthwhile to consider not only the 
possibility of complete asemantic transcoding algorithms, but also more limited 
forms of asemantic transcoding. At the simplest level one might consider whether 
representations of individual digits (e.g., 6), and phonological and orthographic 
representat ions of individual number words (e .g . , / s lks / ,  S-I-X) may be mapped 
onto one another  without an intervening semantic representation. At  the least, 
translation between phonological and graphemic number-word representations 
may presumably be accomplished through the g rapheme-phoneme and 
phoneme-g rapheme  conversion processes postulated for words in general by most 
models of reading (e.g., Patterson & Morton,  1985) and spelling (e.g., Ellis, 
1982), although these processes would reliably generate correct translations only 
for number  words with regular spelling-sound correspondences,  such as s e v e n ,  

and not for irregular words such as o n e .  Mapping between phonological and 
orthographic number-word representations might also be accomplished via the 
direct phonology-to-orthography and orthography-to-phonology routes incorpo- 
rated in some reading and spelling models (e.g., Bub, Cancelliere, & Kertesz, 
1985; Goodman  & Caramazza, 1986). Conceivably, analogous routes might carry 
out mappings between digit representations and phonological or graphemic 
number-word representations. 4 

4Campbell and Clark (1988) discuss results from a patient tested by my colleagues and myself that 
seem to - but in fact do not - provide evidence of asemantic mapping between number words and 
digits. McCloskey et al. (1985) reported that patient HY was at chance in judging which of two written 
number words was larger (e.g., seven vs. five), suggesting impaired comprehension of the words. 
McCloskey et al. (1986), however, reported that HY performed well in matching individual written 
number words with their arabic equivalents (e.g., seven and 7), suggesting an intact ability to translate 
between the two numerical codes. These two results seem to suggest that HY could map number 
words onto digits while at the same time being unable to understand (i.e., derive a semantic 
representation for) the words. However, this was not in fact the case. The magnitude comparison 
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At a slightly higher level, it might be hypothesized that people learn some basic 

asemantic  transcoding rules for mapping between "s imple"  multi-digit arabic 
numerals  - that is, numerals comprising a non-0 digit followed by one or more O's 

- and their verbal counterparts  (e.g., xOOO~--~x thousand, as in 6000 ~--~ six 
thousand).  Rules of this sort would suffice for arabic-verbal transcoding of simple 
numerals ,  but would not be adequate  for transcoding more  complex numerals  

(e.g., 4012 ~-~ four thousand twelve), and hence would not constitute complete 
asemantic  transcoding algorithms. Although there is currently no clear empirical 
support  for asemantic transcoding of simple larger numerals,  the verbal- to-arabic 

transcoding errors made by Singer and Low's  (1933) patient (see pp. 116-117) 

might be interpreted in terms of such rules: Unable to carry out normal arabic 
numeral  production,  the patient may have relied upon direct mapping rules such 
as x thousand ~ x000 and x hundred ~-~ x00, leading to errors such as 2000500 

written in response to " two thousand five hundred ."  (See also the discussion of 
t e rm-by- te rm transcoding errors in Deloche & Seron, 1987). 

Clarification of the roles of semantic and asemantic processes in numerical 
cognition will require not only additional data, but also (and perhaps more 
important ly)  more detailed and explicit formulations of the various theoretical 
positions. With respect to asemantic transcoding, effort might profitably be 

focused on articulating further the transcoding algorithms described by Deloche 

and Seron (1987; see also Cohen & Dehaene ,  1991), and perhaps also the more  
limited processes sketched above. At  the same time, there is a clear need to 

e laborate  the McCloskey et al. (1985) hypothesis of numeral  comprehension and 
product ion processes that communicate  via semantic representations of numbers ,  
by formulat ing more explicit assumptions concerning how the various processes 
are carried out. As discussed in a later section, some progress in this direction has 
been made with regard to verbal numeral  production, but the internal structure 
and functioning of the other numeral  processing components  remain to be 
specified. 

The encoding complex view: An alternative framework 

A view of numerical processing very different from that of McCloskey et al. 

(1985) has been put forth by Campbell  and Clark (1988; Clark & Campbell ,  

results showing impaired performance were obtained in preliminary testing of HY in September 1983. 
The study reported in McCloskey et al. (1986), however, was carried out several months to a year 
later, from April to September 1984. As is often the case in testing of brain-damaged patients, HY's 
performance changed over time; in particular, his processing of verbal numerals improved consider- 
ably. When tested on verbal numeral magnitude comparison during the period in which he performed 
well in arabic-verbal matching, HY was 95% correct (40/42). Thus, the McCloskey et al. (1986) 
results do not show a dissociation in which HY was unable to judge which of two number words was 
larger, yet was able to match a number word with its arabic equivalent. 
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1991). The McCloskey et al. model postulates a modular functional architecture 
in which autonomous processing components communicate via a single form of 
internal numerical representation. In contrast, Campbell and Clark's encoding 
complex view posits a non-modular architecture in which multiple numerical 
codes activate one another in the course of numeral processing and arithmetic 
tasks. The codes, which may include phonological, graphemic, visual, semantic, 
lexical, articulatory, imaginal, and analogue representations (Campbell & Clark, 
1988, p. 209), are assumed to be interconnected in an associative network, so that 
individual codes may activate one another to produce a multi-component "encod- 
ing complex." 

In the McCloskey et al. (1985) model, particular representational formats are 
constrained to be involved only at particular stages of particular numeral process- 
ing and calculation tasks. For example, phonological number-word representa- 
tions are assumed to be implicated only in the numeral comprehension stage of 
tasks involving stimuli in the form of spoken verbal numerals, and the numeral 
production stage of tasks involving spoken verbal responses. The encoding 
complex view, in contrast, does not embody such constraints. Campbell and Clark 
apparently assume that any code may potentially be recruited at any phase of a 
numeral processing or calculation task, and that multiple codes may be implicated 
at any point of the processing. Furthermore, Campbell and Clark (1988; Clark & 
Campbell, 1991) posit individual differences in the complex of codes involved in 
particular tasks. 

Although intriguing in many respects, Campbell and Clark's encoding complex 
view has not yet been developed into a specific model capable of generating clear 
predictions. As Sokol, Goodman-Schulman, and McCloskey (1989) pointed out 
in a recent critique, Campbell and Clark have not fully delineated the set of codes 
presumed to be implicated in numeral processing or calculation; they have not 
specified what codes are used in what tasks; they have not specified how the codes 
are used to accomplish the tasks; and they have not specified the nature of the 
presumed individual differences. 

Empirical evidence 

Although the encoding complex view does not represent a well-articulated 
alternative to the McCloskey et al. (1985) model, it is nevertheless important to 
examine the empirical evidence Campbell and Clark offer as grounds for adopting 
the encoding complex position and rejecting the sort of functional architecture 
postulated by McCloskey et al. For the most part this evidence concerns the forms 
of numerical representations implicated in particular numeral processing or 
calculation tasks. 

The McCloskey et al. (1985) model assumes that central processing of numbers 
is carried out on a single form of abstract semantic representation. However, 
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Campbell and Clark, as well as several other researchers, have argued that the 
available evidence points to the conclusion that numerical processing involves 
multiple format-specific codes - that is, codes tied to the forms in which stimuli 
are presented and/or the forms in which responses are elicited (e.g., Campbell & 
Clark, 1988; Clark & Campbell, 1991; Deloche & Seron, 1987; Gonzalez & 
Kolers, 1982, 1987; Kashiwagi, Kashiwagi, & Hasegawa, 1987; Tzeng & Wang, 
1983; Vaid, 1985; Vaid & Corina, 1989). 

It is certainly the case, as Clark and Campbell (1991) point out, that people 
have the capacity to manipulate format-specific numerical representations. For 
example, one can think of rhymes for number words (e.g, seven rhymes with 
heaven), or make images of digits. Further, some individuals report elaborate 
visual-spatial representations for number sequences (e.g., visualizing the number 
line from 0 to 100 as a spiral; see Seron et al., this issue). The question to be 
considered here, however, is whether format-specific representations play a 
functional role in arithmetic or other numerical processes that do not specifically 
require such representations. Although a detailed discussion is beyond the scope 
of the present article, a brief survey of the major findings cited in support of this 
view suggests that the seemingly impressive evidence is something less than 
definitive. (For further discussion see Sokol, Goodman-Schulman, & McCloskey, 
1989; Sokol et al., 1991.) 

Arithmetic with arabic and roman numerals. Gonzalez and Kolers (1982, 1987) 
measured RT for true/false responses to simple addition problems presented with 
correct or incorrect answers (e.g., 3 + 4 = 7, 2 + 6 = 9). Stimuli were presented in 
the form of arabic numerals (e.g., 3 + 4 = 7), roman numerals (e.g., III + IV= 
VII), or various arabic/roman combinations (e.g., 3 + IV=VII,  I I I+  4 = 7). 
Performance varied as a function of problem format, leading Gonzalez and Kolers 
to conclude that subjects performed the task not by translating both arabic and 
roman numerals into abstract representations, but rather by operating upon 
representations tied to the physical form in which the numbers were presented. 

Sokol et al. (1991) questioned the Gonzalez and Kolers (1982, 1987) conclu- 
sion, pointing out that these researchers failed to articulate explicit claims about 
how representations tied to roman or arabic stimulus formats were used in the 
arithmetic task, or how the use of these format-specific representations led to the 
obtained pattern of results. Presumably Gonzalez and Kolers did not intend to 
suggest that addition facts are stored separately in arabic form (e.g, 5 + 4 = 9) and 
in roman form (e.g., V + IV= IX), so that different stored facts were retrieved 
for roman and arabic problems. Yet if this was not the intended argument it is 
difficult to imagine what was in fact intended. 

Sokol et al. (1991) also suggested that most if not all of the Gonzalez and 
Kolers findings could be interpreted simply by assuming that roman numerals take 
longer to comprehend (i.e., translate into abstract internal representations) than 
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arabic digits. For example, this assumption provides a straightforward explanation 
for the finding that RT increased with the number of roman numerals in a 
stimulus item (e.g., RT was faster for 4 + 5 = 9 than for 4 + V= IX, which in turn 
was faster than I V + V = I X ) .  Although Gonzalez and Kolers (1982, 1987) 
presented results they took as evidence against this slow-roman-comprehension 
interpretation, Sokol et al. (1991) argued that this evidence was weak at best. 

Bilingual arithmetic. In support of the view that format-specific representations 
are implicated in arithmetic, Gonzalez and Kolers (1982, 1987; see also Clark and 
Campbell, 1991) also cited studies of bilinguals' arithmetic performance (Marsh & 
Maki, 1976; McClain & Huang, 1982), concluding that arithmetic implicates 
language-specific representations, and not "some metalinguistic mentalese" (Gon- 
zalez & Kolers, 1987, p. 36). However, the bilingual arithmetic studies do not in 
fact warrant this conclusion. In the Marsh and Maki (1976) study, addition 
problems were presented in arabic form to bilingual subjects, and the subjects 
gave spoken responses in their preferred or non-preferred language. The number 
of addition operations required by a problem varied from one (e.g., 2 + 3) to 
three (e.g., 4 + 3 + 2 + 5). The McClain and Huang (1982) study was very similar, 
except that problems were presented aurally in either the preferred or non- 
preferred language, and subjects responded in the language in which the problem 
was presented. 

The results were the same in both studies. Responses were faster in the 
preferred language than in the non-preferred language. However, the slope of the 
function relating RT to number of arithmetic operations was the same for the 
preferred and non-preferred languages, suggesting that the arithmetic fact retriev- 
al process was the same in both conditions. As Marsh and Maki (1976) pointed 
out, this pattern of results is consistent with at least two interpretations. First, 
subjects may have translated the problems into the preferred language, and 
carried out the calculations on representations tied to this language. On this 
interpretation RT was slower in conditions requiring responses in the non- 
preferred language because the computed sums had to be translated from the 
preferred to the non-preferred language for output. The second interpretation 
states that subjects translated the problems into abstract language-independent 
representations, and then translated the answers into the preferred or non- 
preferred language for output. On this account RT was slower for responses in 
the non-preferred language because the translation of answers from abstract to 
language-specific form (and, in the McClain & Huang study, translation of 
problems from language-specific to abstract form) took longer for the non- 
preferred than for the preferred language. Thus, the Marsh and Maki (1976) and 
McClain and Huang (1982) results are equally consistent with format-specific and 
format-independent accounts of arithmetic fact retrieval. 
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Numerical comparison. When normal subjects judge which of two numbers is 
larger, responses are slower for numbers that are close in magnitude, such as 7 
and 6, than for numbers that are not, such as 7 and 2 (e.g., Moyer & Landauer, 
1967; for reviews, see Banks, 1977; Holender & Peereman, 1987; Moyer & 
Dumais, 1978). This numerical distance effect has been obtained for stimuli in a 
variety of forms, including arabic digits (e.g., Moyer & Landauer, 1967; Sekuler, 
Rubin, & Armstrong, 1971), written number words (e.g., Foltz, Poltrock, & 
Potts, 1984), patterns of dots (Buckley & Gillman, 1974), and Japanese kanji and 
kana numerals (Takahashi & Green, 1983). These results have been interpreted 
as evidence that regardless of the form in which stimuli are presented, per- 
formance on the task is mediated by abstract quantity representations that reflect 
magnitude relations among numbers. 

However, some researchers (e.g., Besner & Coltheart, 1979; Takahashi & 
Green, 1983; Tzeng & Wang, 1983; Vaid, 1985; Vaid & Corina, 1989) have 
argued that performance in the numerical comparison task is influenced by the 
format of the stimuli, at least with respect to phenomena other than the numerical 
distance effect (e.g., the so-called "size congruity" effect; see Besner & Colt- 
heart, 1979). These results have been taken to suggest that judgments of relative 
magnitude are made on the basis of codes tied to the form in which stimuli are 
presented, such as visual digit representations or phonological number-word 
representations (e.g., Campbell & Clark, 1988; Vaid, 1985). However, Holender 
and Peereman (1987), in a systematic review of stimulus format effects in 
numerical comparison, concluded that the available data are consistent with the 
assumption that stimuli in various forms are converted into a single form of 
internal representation. 

At present the nature of the representations underlying performance in 
numerical comparison tasks remains an open issue. As in the case of semantic 
versus asemantic transcoding, progress in resolving the issue will probably depend 
not only upon additional empirical research, but also upon further development 
of the alternative theoretical perspectives. For instance, it will be important for 
proponents of the format-specific code position to provide a specific interpretation 
for the numerical distance effect and, more generally, to explain how relative 
magnitude judgments can be made on the basis of representations that do not 
directly specify quantity information, such as visual digit representations or 
phonological number-word representations. 

Two new studies 

My colleagues and I have recently carried out two studies of brain-damaged 
patients aimed specifically at testing the assumption of a modular cognitive 
architecture in which autonomous processing mechanisms communicate via a 
single form of internal numerical representation. 
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Patient PS : Manipulation of  stimulus and response formats in arithmetic. I have 
already mentioned patient PS, who suffered from a deficit in retrieval of 
arithmetic facts. In testing PS on single-digit multiplication Sokol et al. (1991) 
manipulated the format of stimuli and responses. Problems were presented, and 
responses were elicited, in the form of arabic numerals (e.g., 3 × 4), written 
verbal numerals (e.g., three times four), and dots. In conditions involving dots 
stimuli, two thin manila envelopes were placed side by side with the multiplication 
symbol between them. In each envelope was a strip of paper containing a column 
of nine dots. A problem was presented by sliding each paper strip out of its 
envelope to expose the appropriate number of dots (e.g., 6 dots from the left 
envelope and 7 dots from the right envelope for 6 × 7). In conditions involving 
dots responses PS pulled strips of paper from envelopes to reveal dots represent- 
ing tens and ones (e.g., 4 dots from a tens envelope and 2 dots from a ones 
envelope for the answer 42). PS was tested on all nine combinations of the three 
stimulus formats and the three response formats. 

Results from several tasks indicated that PS was intact in comprehending and 
producing numbers in each of the tested formats. Hence, given the assumption 
that numerical inputs are converted to a single form of internal representation, 
the McCloskey et al. (1985) model predicts that the same pattern of impaired 
multiplication performance should be observed for all stimulus and response 
formats. If, in contrast, arithmetic fact retrieval involves format-specific repre- 
sentations and processes, then the pattern of impairment should presumably vary 
across stimulus and response formats. For example, one might expect to find that 
PS's fact retrieval impairment was limited to particular stimulus or response 
formats, or that she made different types of errors for different formats, or so 
forth. 

In assessing the effects of the format manipulations Sokol et al. (1991) 
analyzed results for problems with operands in the range 1-9. (Across-format 
comparisons were not possible for O's problems, because PS's performance on 
these problems changed drastically partway through the testing period, for 
reasons unrelated to the format manipulations; see pp. 149-150) PS's error rate 
on the 1-9's problems was clearly unaffected by stimulus or response format. For 
arabic, written verbal, and dots stimuli the error rates were 12%, 13%, and 13%, 
respectively; for arabic, written verbal, and dots responses error rates were 13%, 
14%, and 12%, respectively. 

Further, analyses in which PS's errors were classified into various types 
indicated that the distribution of errors across types was virtually identical for 
each stimulus and response format. Finally, Sokol et al. (1991) calculated the 
error rate for each individual problem (e.g., 6 × 4) for each stimulus and response 
format, and computed pairwise correlations between formats. The correlations 
were quite high, ranging from .83 to .90, indicating that PS tended to err on the 
same problems in each stimulus and response format. 
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This striking consistency in performance across the various forms of stimuli and 
responses strongly suggests that as stimulus and response formats were varied, the 
arithmetic fact retrieval process remained constant - that is, the same representa- 
tions of problems were used to address the same representations of answers. 
Thus, the results support the assumption that arithmetic fact retrieval is mediated 
by internal numerical representations that are independent of the form in which 
stimuli are presented or responses are given. 

The data do not, however, speak directly to the further claim that these 
representations are abstract quantity representations. For example, one might 
imagine that for all stimulus or response formats, problems are converted to 
phonological number-word representations ( e .g . , / s lk s / / t aymz/ / ey t / ) ,  and that 
these representations are used to address phonological representations of answers 
(which may then be converted to other forms for output). Although we have no 
definitive evidence to offer on this point, the nature of PS's errors provides 
tentative support for the assumption that abstract quantity representations under- 
lie the fact retrieval process. PS's fact retrieval errors were predominantly 
"operand" errors, in which the erroneous response is the correct answer to a 
problem sharing an operand with the stimulus problem (e.g., 7 x 8 = 48, in which 
the erroneous answer is correct for 6 x 8). In virtually all of the operand errors, 
the stimulus problem and the problem for which the answer was correct were 
close in magnitude with respect to the non-shared operand. For example, in 
7 x 8 = 48 the stimulus problem (7 x 8) and the problem for which the response is 
correct (6 x 8) differ by 1 on the non-shared operand (7 vs. 6). In fully 95% of 
PS's operand errors (172/182) the non-shared operand was within ___2 of the 
correct operand. Thus, PS's erroneous responses were correct for problems with 
operands numerically (as opposed to phonologically or visually) similar to the 
operands in the stimulus problem. This operand distance effect is also observed in 
the errors made by normal subjects (e.g., Campbell & Graham, 1985; Miller, 
Perlmutter, & Keating, 1984). Although several interpretations may be offered 
for the effect (see Sokol et al., 1991; McCloskey et al., 1991), it is at least 
consistent with the assumption that arithmetic fact retrieval is mediated by 
abstract quantity representations. 

Patient RH: Multiple deficits in numeral processing. Macaruso, McCloskey, 
and Aliminosa (in press) studied lexical processing of numerals in patient RH, a 
42-year-old man with a B.A. in chemistry who underwent surgery for removal of 
a left temporal-parietal brain tumor. RH was tested with 12 transcoding tasks, 
comprising all translations among numbers in the form of arabic numerals, written 
verbal numerals, spoken verbal numerals, and dots. For example, in the arabic- 
to-spoken-verbal transcoding task RH read aloud arabic numerals (e.g., stimulus 
84, correct response "eighty-four"). Stimuli were limited to numbers in the range 
0-99 so that lexical processing (i.e., processing of individual elements of a 
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numeral)  could be studied without complications introduced by RH's  severe 
deficits in syntactic processing of numerals. The results for the 12 tasks are shown 
in Table 1, in the column labelled "Actual  error percentage." 

According to the McCloskey et al. (1985) model, each transcoding task 
involves a comprehension process that converts the stimulus into an abstract 
internal representation,  and a production process that transforms the internal 
representat ion into the appropriate form for output. For example, the arabic-to- 
written-verbal transcoding task requires arabic numeral comprehension processes, 
and the graphemic processing mechanisms within the verbal numeral production 
c o m p o n e n t )  From the assumption of autonomous comprehension and production 
processes communicating via a single form of abstract internal representation, it 
follows that the error  rate on any given task should be a joint function of the 
extent of damage to the comprehension process, and the extent of damage to the 
product ion process. Thus, it should be possible to explain the pattern of per- 
formance across the 12 tasks by specifying the extent of impairment to each of the 
8 underlying comprehension and production processes. On the other hand, if the 

assumption of a modular functional architecture is incorrect (as Campbell & 
Clark, 1988, and Clark & Campbell, 1991 suggest), one would not expect RH's  
performance to be explicalSle by reference to independent comprehension and 
product ion processes, each of which is implicated in multiple tasks. 

Table 1. Actual and expected error percentages on the 12 transcoding tasks for 
patient R H  

Stimulus form Response form Actual 

Error percentage 

Expected 

Arabic Spoken verbal 25.5 24.8 
Arabic Written verbal 88.0 88.6 
Arabic Dots 3.0 3.1 

Spoken verbal Arabic 21.0 19.7 
Spoken verbal Written verbal 89.5 90.3 
Spoken verbal Dots 16.5 17.4 

Written verbal Arabic 6.5 10.2 
Written verbal Spoken verbal 33.5 28.3 
Written verbal Dots 7.5 7.6 

Dots Arabic 11.5 8.2 
Dots Spoken verbal 21.5 26.7 
Dots Written verbal 90.0 88.9 

5Macaruso et al. (in press) assumed that the tasks involving dots make use of dots comprehension 
and production processes developed on the basis of experience with the dots format. 
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Macaruso et al. (in press) attempted to fit RH's performance pattern quantita- 
tively to the McCloskey et al. (1985) model. Applying an iterative gradient 
descent algorithm to a set of equations expressing the model's assumptions about 
the comprehension and production processes contributing to each task, they first 
derived from the error rates on the 12 tasks estimates of the extent of damage to 
each of the underlying processes. These estimates are presented in Table 2. The 
value for a process represents an estimate of the probability of error for that 
process on any given trial. For example, the .174 estimated error probability for 
spoken verbal numeral comprehension indicates that this process is expected to 
generate an incorrect semantic representation for a dictated numeral on 17.4% of 
trials (for stimuli in the 0-99 range). 

The critical question for the McCloskey et al. (1985) model was: to what extent 
can the pattern of error rates across the 12 transcoding tasks be interpreted in 
terms of the estimated error probabilities for the hypothesized underlying com- 
prehension and production processes? To answer this question, Macaruso et al. 
(in press) computed for each task the performance expected on the basis of the 
estimated error probabilities. Consider, for example, the Arabic-to-spoken-verbal 
task. Assuming that comprehension and production errors represent independent 
events, the probability of error in the task is given by PAC + PsvP - PAcPsvP, 
where PAc is the probability of error in the arabic comprehension process, PsvP is 
the probability of error in the spoken verbal production process, and PAcPsvP is 
the product of these two probabilities. Carrying out the computation using the 
estimated error probabilities of .031 for arabic numeral comprehension and .224 
for spoken verbal numeral production, one arrives at an expected error rate for 
the arabic-to-spoken verbal transcoding task of .248 (i.e., 24.8%), which accords 
well with the observed error rate of .255(25.5%). 

The column labeled "Expected error percentage" in Table 1 presents the 
expected error rates for each of the 12 tasks. It is apparent from the table that the 
observed and expected error rates corresponded very closely; for no task were the 

Table 2. Derived error probabilities for patient RH for each comprehension and 
production process 

Process Error probability 

Comprehension 

Production 

Arabic .031 
Spoken verbal .174 
Written verbal .076 
Dots .056 

Arabic .028 
Spoken verbal .224 
Written verbal .882 
Dots .000 
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two values reliably different. 6 Thus, RH's pattern of performance across the 12 
transcoding tasks may be explained in terms of damage to the underlying numeral 
comprehension and production processes posited by the McCloskey et al. (1985) 
model. 

Examination of error patterns across tasks provided further support for the 
claim that RH suffered from damage to independent numeral comprehension and 
production processes. For example, on the three tasks requiring written verbal 
responses RH showed a virtually identical pattern across tasks in error rates and 
types of errors for individual words. These results support the assumption that the 
same disrupted numeral production process was employed in all three tasks. 

Finally, the error data provided evidence for the involvement of semantic 
representations in the transcoding tasks. For each of the tasks showing substantial 
impairment RH displayed a very strong tendency to produce incorrect digits or 
words similar in magnitude (and not visually or phonologically similar) to the 
correct digits or words. For example, in tasks involving production of spoken 
verbal numerals, the incorrect number words produced by RH were consistently 
close in magnitude to the correct words (e.g., eighty-three read aloud as "ninety- 
three" and 47 read as "forty-six"). This result supports the assumption of a 
functional architecture in which comprehension and production processes com- 
municate via abstract semantic representations. 

Summary 

The preceding discussion illustrates both that recent research has confronted 
fundamental issues concerning the nature of cognitive numerical processing 
mechanisms, and that these issues remain very much open. In particular, the 
extent to which numerical processing mechanisms are modular, and the forms of 
numerical representation implicated in central processing of numbers, are likely 
to be debated for some time to come. Regardless of the ultimate resolution of 
these issues, the most productive approach would appear to be that of beginning 
with a relatively simple and constrained model (whether the McCloskey et al. 
model, or some alternative model yet to be developed), adding processing 

6The close correspondence between actual and expected error rates is not a trivial result. Because 
each hypothesized numeral comprehension and production process is assumed to be involved in three 
of the 12 tasks, each estimated error probability must contribute to explaining three different task 
error  rates. For example, the estimated error probability for written verbal numeral production must 
contribute to interpreting the error rates for arabic-to-written-verbal, spoken-verbal-to-written-verbal, 
and dots-to-written-verbal transcoding. As a consequence, it is not the case that any arbitrary pattern 
of error  rates could be fit to the model. To demonstrate that the model could not accommodate any 
arbitrary pattern of results, Macaruso et al. (in press) randomly assigned the 12 observed error rates to 
the 12 tasks, and then at tempted to fit these arbitrary patterns to the model. In 498 of 500 different 
random assignments "actual" and expected performance differed reliably for at least one task; for 474 
of the random assignments, at least 9 of the 12 tasks showed reliable actual/expected differences. 
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mechanisms or otherwise relaxing constraints only when the original set of 
assumptions proves inadequate. In contrast, the wholesale abandonment of 
constraints exemplified by the encoding complex view in its current form (Camp- 
bell & Clark, 1988; Clark & Campbell, 1991) seems unlikely to prove fruitful. 

INTERNAL STRUCTURE AND FUNCTIONING OF PROCESSING 
COMPONENTS 

In addition to exploring the general functional architecture of the cognitive 
numeral processing and calculation mechanisms, recent research on dyscalculia 
has probed the internal structure of particular processing mechanisms within this 
general architecture. For the most part attention has focused on mechanisms for 
verbal numeral production, and arithmetic fact retrieval. In the following sections 
I consider these two topics in turn. 

Cognitive processes in production of verbal numerals 

My colleagues and I have recently studied several patients with impairments in 
production of verbal numerals (McCloskey et al., 1986; McCloskey, Sokol, 
Goodman-Schulman, & Caramazza, 1990; Sokol & McCloskey, 1988), with the 
aim of characterizing the representations and processes underlying verbal numeral 
production. On the basis of the McCloskey et al. (1985) model we assumed that 
the verbal numeral production process takes as input an abstract semantic 
representation of a number, and generates as output a sequence of phonological 
(spoken output) or graphemic (written output) number word representations. In 
this section I review the results of our studies, and also consider a recent report by 
Cohen and Dehaene (1991) that raises questions about some of our conclusions. 

I will discuss verbal numeral production primarily in terms of English verbal 
numerals. Most aspects of the production process are presumably common to 
languages with substantially similar verbal numeral systems (e.g., French), and 
fundamental aspects of the process may well be shared still more broadly. 
Nevertheless, it is important to bear in mind that the lexical and syntactic 
structure of verbal numerals varies considerably across languages, and this 
variation may be reflected in the representations and processes underlying verbal 
numeral production. (For further discussion see McCloskey et al., 1986; Deloche 
& Seron, 1987; and Cohen & Dehaene, 1991.) 

Linguistic structure of English verbal numerals 

A brief examination of the linguistic structure of verbal numerals may help to 
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make clear the nature of the computations a verbal numeral production process 
must carry out. In the English verbal numeral system, the "ones" words one 
through nine represent the basic quantities {1} through {9}. The "tens" words 
(twenty, th ir ty , . . .  ,ninety) represent basic quantities times ten. Numbers includ- 
ing both tens and ones are represented by combining the appropriate tens word 
with the appropriate ones word (e.g., thirty-six). The single exception to this rule 
is that numbers made up of one ten and some ones are represented by a special 
set of "teens" words. For instance, the number consisting of one ten and six ones 
is represented by the word sixteen. 

Numbers larger than ninety-nine are represented by associating ones, teens, 
and tens words with multiplier words such as hundred, thousand, and million. The 
basic unit in a verbal numeral is the sequence [ONES hundred TENS ONES] 
(e.g., six hundred thirty-seven). The word hundred in this sequence serves as a 
multiplier for the preceding ones word, multiplying its value by one hundred. In 
any specific instantiation of the [ONES hundred TENS ONES] unit, some 
elements may be null, as in six hundred seven (in which there is no tens word). 
Further, the sequence TENS ONES may be replaced by TEENS, as in six 
hundred seventeen. 

Whereas hundred acts as a multiplier for a single word, the multipliers 
thousand, million, and so forth, multiply entire units. For example, in the 
numeral six hundred thirty-seven thousand, thousand multiplies the entire unit six 
hundred thirty-seven. 

A complete number is represented simply by assembling the basic units, with 
their associated multipliers, in order of decreasing magnitude. Thus, the number 
634,546,321 is represented by arranging the following units in the order shown: 

((six) hundred thirty-four) million ((five) hundred forty-six) thousand 
((three) hundred twenty-one) 

The parentheses show the scope of the multipliers: each multiplier applies to the 
expression enclosed by the set of parentheses to its immediate left. Thus, in the 
millions unit, hundred multiplies six, and million multiplies the entire unit. 

Results from several patients suggest that this rich lexical and syntactic 
structure is reflected in the cognitive mechanisms underlying production of verbal 
numerals. 

Patient H Y  

McCloskey et al. (1986) probed production of spoken verbal numerals in patient 
HY, a 69-year-old right-handed man who sustained left temporal-parietal damage 
as a consequence of a CVA. Over a period of several months HY read aloud 
nearly 5000 1- to 7-digit arabic numerals, with an error rate of 14%. Examples of 



134 M. McCloskey 

Table 3. Examples of  patient HY 's  errors in reading aloud arabic numerals 

Stimulus Response 

1 five 
17 thirteen 
29 forty-nine 

317 three hundred fourteen 
14,840 sixteen thousand eight hundred forty 

940,711 nine hundred twenty thousand five hundred eleven 

his errors are presented in Table 3. The vast majority of errors were lexical 
substitutions in which an incorrect number word was substituted for the correct 
word. For example, in the response "three hundred fourteen" to the stimulus 317, 
the incorrect word fourteen was produced in place of the correct word seventeen. 

According to the McCloskey et al. (1985) model, reading aloud an arabic 
numeral (e.g., 20,012) involves first an arabic numeral comprehension process 
that translates the arabic stimulus into an internal semantic representation (e.g., 
{2}10EXP4, {1}10EXP1, {2}10EXP0). This representation then serves as input 
to a verbal numeral production process, which generates as output a sequence of 
phonological number-word representations (e.g., / twenty / / thousand / / twelve/). 
(For convenience, I will henceforth use words enclosed in slashes to indicate 
phonological representations.) 

Results from several numeral-processing tasks suggested that HY's errors in 
reading aloud arabic numerals reflected a deficit in production of spoken verbal 
numerals, and not an impairment in comprehension of arabic numerals: in tasks 
requiring arabic numeral comprehension HY performed well, whereas in tasks 
requiring spoken production of verbal numerals he made lexical substitution 
errors (McCloskey et al., 1986). 

McCloskey et al. (1986) conducted an analysis in which HY's responses in 
reading aloud arabic numerals were compared word-by-word with the correspond- 
ing correct responses. For example, HY responded "five thousand four hundred 
seventy" to the stimulus 5450. Comparing this response to the correct response 
"five thousand four hundred fifty" reveals that the words five, thousand, four, and 
hundred were produced correctly, but that seventy was substituted for the correct 
word fifty. A confusion matrix tabulating the results of this analysis for the ones, 
teens, and tens words is shown in Figure 3. The rows of the matrix represent the 
correct response words, and the columns represent the words produced by HY. 
For example, the row for the word two indicates that when the correct response 
word was two, HY never said "zero," but said "one" 10 times, "two" 649 times, 
"three" once, and so forth. Note that the unit of analysis is the individual word, 
and not the response as a whole. 

HY's errors were not evenly distributed across the possible incorrect response 
words. Rather, the errors fell into three distinct clusters. When the correct word 
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Figure 3. Number-word confusion matrix for patient HY. 

was a ones word (i.e.,  between one and nine), nearly all of the incorrect words 
produced by H Y  were also ones words. When the correct word was a teens word 
(i .e. ,  be tween ten and nineteen), nearly all of HY ' s  errors were also teens words. 

Finally, when the correct word was a tens word (i.e.,  twenty, thirty, forty,..., 
ninety), H Y ' s  errors were almost always tens words. Over  90% of H Y ' s  errors 

(665 of 720) fell into one of these three clusters. 

A model of spoken verbal numeral production 

With HY ' s  pat tern of lexical substitution errors as a principal motivation,  
McCloskey et al. (1986) proposed a model of the verbal numeral  production 
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process. The major assumptions of the model concern the representation of 
number words in the phonological output lexicon (i.e., the store of phonological 
word representations underlying the production of spoken language), and the 
processes that compute from a semantic representation of a number the sequence 
of number words to be retrieved from the lexicon. 

The phonological output lexicon. The model assumes that within the 
phonological output lexicon the representations of the basic number words (i.e., 
one, two,...  ,eighty, ninety) are partitioned into three functionally distinct classes, 
as shown in Table 4. The ONES class contains phonological representations of the 
words one through nine, the TEENS class contains phonological representations 
of the words ten through nineteen, and the TENS class contains phonological 
representations of the words twenty, thirty, and so forth, up to ninety. Retrieval of 
a phonological representation thus involves specifying the appropriate lexical class 
(e.g., TENS), and the appropriate position within the class (e.g., the position for 
the quantity {5}). For example, the phonological representa t ion/f i f ty /would be 
addressed by the class/position-within-class specification TENS:{5), and 
TEENS: {2} would specify/twelve/.  The output lexicon is also assumed to include 
a M U L T I P L I E R  class containing phonological representations of the multiplier 
words hundred, thousand, million, and so forth. 

The numeral production process. McCloskey et al. (1986) assumed that when 
the verbal numeral production process receives a semantic representation of a 
number,  the largest power of ten in the number is identified, and on this basis a 
"syntactic frame" is generated. Consider, for example, the semantic representa- 
tion {3}10EXP4, {7}10EXP2, (9)10EXP1, corresponding to the arabic stimulus 
30,790. From this input, the following frame would be generated: 

[ T E N S :  O N E S :  ] MULT:T [ [ O N E S :  ] MULT:H T E N S :  O N E S :  ] 
"10EXP4 . . . .  10EXP3 . . . .  10EXP2 . . . .  10EXP1 . . . .  10EXP0" 

Table 4. Number-lexical classes 

Lexical class 

Quantity Ones Teens Tens 

{0} - ten - 
{1} one eleven - 
{2} two twelve twenty 
{3} three thirteen thirty 
{4} four fourteen forty 
{5} five fifteen fifty 
{6} six sixteen sixty 
{7) seven seventeen seventy 
{8} eight eighteen eighty 
{9) nine nineteen ninety 
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This frame specifies, among other things, that for numbers in which 10EXP4 is 
the largest power of ten, the canonical verbal form is a TENS word, followed by a 
ONES word, followed by the MULTIPLIER thousand, followed by a ONES 
word, and so forth. 

After the syntactic frame is generated, each basic quantity in the input 
semantic representation is assigned to the appropriate slot in the frame. This 
filling of the frame is guided by the labels beneath each slot. For example, the 
label under the leftmost slot specifies that this slot should be filled with the 
quantity associated with 10EXP4 (i.e., {3}). Thus, for 30,790 the filled frame 
takes the following form: 

[ TENS:{3} ONES:__ ] MULT:T [ [ ONES: {7} ] MULT:H TENS: {9} ONES:__ l 
"10EXP4 .... 10EXP3 . . . .  10EXP2 . . . .  10EXP1 . . . .  10EXP0" 

The filled syntactic frame represents a plan for production of the sequence of 
words comprising the verbal numeral. The individual elements in the frame (e.g., 
TENS:{3}) are abstract lexical-semantic representations of the to-be-produced 
wordl. These abstract representations are used to address phonological repre- 
sentations in the output lexicon. For each filled slot the class label (e.g., TENS) 
indicates the number-lexical class, and the quantity representation (e.g., {3}) 
identifies the position within class. Thus, for example, the leftmost slot specifies 
retrieval of the phonological representation/thirty/. An empty slot, such as the 
"10EXP3" slot in the frame shown above, indicates that no phonological repre- 
sentation should be retrieved. Multiplier words are specified in terms of the 
MULTIPLIER class (abbreviated MULT in the present examples) and the 
particular item within that class. Thus, MULT:T and MULT:H represent instruc- 
tions for retrieval of the phonological representat ions/ thousand/and/hundred/ ,  
respectively. The final step in the production process is therefore the retrieval of 
the phonological representations specified by the filled syntactic frame. In the 
present example, the retrieval process would yield the sequence /thirty/ 
/ thousand/ / seven/ /hundred/ /n ine ty / .  

The lexical retrieval process is assumed to unfold as described, unless a {1} is 
encountered in a TENS-class slot. In this event, a special "teens" procedure is 
invoked. This procedure does not retrieve a phonological representation from the 
TENS class, but instead proceeds to the next slot and pairs the quantity value in 
that slot with the class label TEENS, in order to address a phonological 
representation in the TEENS class. For example, for the filled frame shown below 
the teens procedure would generate TEENS:{3}, so that the lexical retrieval stage 
would yield the sequence/s ix / /hundred/ / th i r teen/ :  

[ [ ONES:{6} ] MULT:H TENS:{1} ONES:{3} ] 
"10EXP2 . . . .  10EXP1 .... 10EXP0" 

If the slot that specifies the position within the TEENS class is empty (as it would 
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be for 610), then the teens procedure is assumed to generate the specification 
TEENS:{0}, leading to retrieval of / ten / .  

Finally, one additional assumption about multipliers and empty slots is needed. 
The brackets in the syntactic frame indicate the slots to which the multipliers 
apply. If all slots within the scope of a multiplier are empty, then the multiplier 
word is omitted. Consider, for example, the filled frame for the number 30,079: 

[ TENS:{3} O N E S :  ] MULT:T [ [ O N E S :  ] MULT:H TENS:{7} ONES:{9} ] 
"10EXP4 .... 10EXP3 . . . .  10EXP2 . . . .  10EXP1 .... 10EXP0" 

The multiplier hundred applies only to the ONES slot to its immediate left. 
Because this slot is empty, the phonological form/hundred/ is  not retrieved, and 
the retrieval process yields the sequence/ th i r ty / / thousand/ /seventy/ /n ine/ .  

Thus, the McCloskey et al. (1986) model assumes that production of verbal 
numerals involves a progression through three levels of representation. The input 
to the process is a semantic representation of a number. This representation is 
converted to an abstract representation of the corresponding verbal numeral, a 
representation comprising lexical-semantic representations of the individual num- 
ber words as well as syntactic information about the word sequence as a whole 
(i.e., information about word order, and scope of multipliers). Finally, the 
abstract numeral representation is converted to a sequence of phonological 
number-word representations. 

Application of the Model to HY's performance 

The McCloskey et al. (1986) model provides a straightforward account of HY's 
error pattern in terms of a deficit affecting retrieval of phonological number-word 
representations from the phonological output lexicon. McCloskey et al. (1986) 
argued that given a specification of a to-be-retrieved number word, HY was 
largely intact in accessing the correct number-lexical class, but was impaired in 
accessing the appropriate position within class. For example, given the specifica- 
tion TENS:(7}, the lexical retrieval process would almost always access the TENS 
class. However, the retrieval process might access the wrong position within the 
TENS class, resulting in the substitution of an incorrect tens word (e.g., forty, 
sixty) for the correct word seventy. A deficit of this sort should lead to within-class 
lexical substitution errors (i.e., errors in which the incorrect words are from the 
same number-lexical class as the correct words). This is, of course, just what the 
confusion matrix in Figure 3 shows - HY substituted ones words for ones words, 
teens words for teens words, and tens words for tens words. 

Patient JE 

McCloskey et al. (1990) reported results from a patient whose errors in reading 
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arabic numerals were quite different from those of HY. Patient JE, a 48-year-old 
man who suffered a left hemisphere CVA, read aloud 848 arabic numerals of 1-5 
digits, with an error rate of 6.4%. Approximately one-fourth of JE's errors were 
within-class lexical substitutions (e.g., stimulus 5097, response "five thousand 
nine ty - f ive") .  The remaining three-fourths were "quantity shift" errors, in which 
a quantity associated with one power of ten in the arabic stimulus was associated 
with another power of ten in the verbal response. For example, JE read aloud 
8900 as "eight thousand ninety." Thus, the nine hundreds in the stimulus became 
nine tens in the response. Other examples are presented in Table 5. Most of the 
quantity shift errors were not interpretable as lexical substitutions in which an 
incorrect word was retrieved in place of a correct word, because the incorrect 
responses usually contained a different number of words than the corresponding 
correct responses. For example, the correct response to the stimulus 5012 contains 
three words, but JE's response - "five thousand one hundred two" - included 
five. 

On tests of arabic numeral comprehension JE's performance was perfect, 
suggesting that his errors in reading aloud arabic numerals stemmed from 
disruption of the verbal numeral production process. McCloskey et al. (1990) 
suggested in particular that JE's quantity shift errors reflected a deficit in 
generating and filling syntactic frames for verbal numerals. More specifically, they 
suggested that JE was impaired in using the power-of-ten specifications in 
semantic representations of numbers to generate the appropriate syntactic frame, 
and to assign quantity representations to the appropriate slots in the frame. 

Consider, for example, the stimulus 5012, to which JE responded "five 
thousand one hundred two." For this stimulus, the arabic numeral comprehension 
process should generate the semantic representation {5}10EXP3, {1}10EXP1, 
{2} 10EXP0, and from this semantic representation the verbal numeral production 
process should create the following syntactic frame: 

[ ONES:{5} ] MULT:T [ [ O N E S :  ] MULT:H TENS:(1} ONES:{2} ] 
"10EXP3 . . . .  10EXP2 . . . .  10EXP1 . . . .  10EXP0" 

Suppose, however, that in the process of filling the syntactic frame the 10EXP1 

Table 5. Examples  o f  patient  J E ' s  quantity shift errors in reading aloud arabic 
numerals  

Stimulus Response 

5012 
7900 
1200 
2070 
6003 

45,010 

five thousand one hundred two 
seven thousand ninety 
one thousand twenty 
twenty thousand seventy 
six hundred three 
forty-five thousand one hundred 
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specification associated with the quantity {1} in the semantic representation were 
misinterpreted as 10EXP2. The result would be assignment of the {1} representa- 
tion not to the correct "10EXPI" slot in the syntactic frame, but rather to the 
"10EXP2" slot: 

[ ONES:{5} ] MULT:T [ [ ONES:{1} ] MULT:H T E N S :  ONES:{2} ] 
"10EXP3 . . . .  10EXP2 . . . .  10EXP 1 .... 10EXP0" 

This error in filling the syntactic frame would lead to the incorrect response "five 
thousand one hundred two." 

Patient JS 

Sokol and McCloskey (1988) studied a patient whose performance in written and 
spoken production of verbal numerals supported the assumptions of the McClos- 
key et al. (1986) model concerning the architecture of the verbal numeral 
production mechanisms. The model assumes that the syntactic frame constructed 
as the first step in the production process specifies the to-be-produced number 
words in abstract lexical-semantic form (e.g., TENS:{4}, ONES:{8}). At this 
abstract planning level, neither the representations nor the processes that com- 
pute these representations are tied specifically to the spoken production mode. 
Consequently, the model predicts that this initial planning stage is common to 
spoken and written production of verbal numerals. 

Written and spoken production should diverge, however, at the lexical retrieval 
stage. Spoken production requires retrieval of phonological number-word repre- 
sentations from a phonological output lexicon, whereas written production re- 
quires retrieval of.graphemic representations from a graphemic output lexicon. 
Consistent with these assumptions patient JS exhibited both a syntactic associa- 
tion and a lexical dissociation in spoken versus written verbal numeral production. 

JS was presented with arabic numerals of 1-9 digits, and asked either to read 
the numeral aloud (spoken production task), or to write the numeral in word form 
(written production task). Approximately 250 stimuli were presented in each task. 
JS's overall error rate was 27% in the spoken production task, and 18% in the 
written production task. On tests of arabic numeral comprehension, however, his 
performance was excellent, suggesting that the errors in the spoken and written 
verbal numeral production tasks reflected a deficit in the production of the verbal 
responses, and not in the comprehension of the arabic stimuli. 

Spoken production task. In reading aloud arabic numerals JS made two 
distinct types of errors. For 13% of the stimuli, he made lexical substitutions, 
nearly all of which were within-class errors (e.g., stimulus 309, response "six 
hundred nine"). Sokol and McCloskey (1988) interpreted these errors as reflect- 
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ing a mild deficit in retrieval of phonological number word representations from 
the phonological output lexicon. 

In addition to the lexical substitution errors, JS made syntactic errors for 17% 
of the stimuli. These errors involved incorrect arrangements of multiplier words in 
the spoken response. For example, JS read aloud 146,359 as "one hundred 
thousand forty-six three hundred fifty-nine." The syntactic errors occurred only 
for 6- through 9-digit stimuli, and in fact were limited to the thousands or millions 
unit of the response (i.e., the unit correctly produced as ONES hundred TENS 
ONES thousand, as in five hundred eighty-nine thousand, or ONES hundred 
TENS ONES million, as in seven hundred fifty-nine million). Sokol and McClos- 
key (1988) noted that these units are syntactically complex because they involve 
multiplication of basic number-word values by more than one multiplier (e.g., in 
five hundred eighty-nine thousand, hundred multiplies five, and thousand multip- 
lies the entire unit). They suggested that JS's syntactic errors stemmed from a 
deficit in placement of multiplier word specifications in syntactic frames for 
syntactically complex units. 

Written production task. According to the McCloskey et al. (1986) model, 
construction of a syntactic frame should be common to spoken and written 
production of verbal numerals. Consistent with this assumption, JS presented with 
a pattern of syntactic errors in the written production task that was virtually 
identical to his pattern in the spoken production task. Syntactic errors in written 
production occurred for 18% of the stimuli (compared to 17% in the spoken 
task), and as in spoken production involved only the thousands or millions units 
in responses to 6- through 9-digit stimuli. Finally, the syntactic errors in the 
written production task were of the same sorts as in the spoken production task, 
as the examples in Table 6 illustrate. Sokol and McCloskey (1988) took the close 
similarity of syntactic error patterns across the two tasks as support for the 
assumption of a syntactic frame generation process common to spoken and 
written production of verbal numbers. 

Table 6. Examples o f  patient JS's syntactic errors in spoken and written produc- 
tion o f  verbal numerals 

Stimulus Response 

Spoken production task 
407,013 four hundred thousand seven, thirteen 

4,258,631 four million, two thousand fifty-eight, six hundred thirty-one 
349,258,107 three forty-nine million, two fifty-eight thousand, one hundred seven 

Written production task 
358,916 three hundred thousand fifty-eight nine hundred sixteen 
209,712 two thousand nine seven hundred twelve 

230,561,317 two thirty million five sixty-one thousand three hundred seventeen 
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JS's performance also supported the assumption that spoken and written 
production diverge at the lexical retrieval stage. Whereas JS made lexical 
substitution errors for 13% of the stimuli in the spoken production task, he made 
no lexical errors in the written production task. Sokol and McCloskey (1988) 
interpreted this dissociation by assuming that JS was impaired in retrieval of 
phonological number-word representations from the phonological output lexicon, 
but not in retrieval of graphemic number-word representations from the 
graphemic output lexicon. 

Patient YM 

The findings of the studies reviewed thus far are consistent with the McCloskey et  
al. (1986) model of verbal numeral production (although see Campbell & Clark, 
1988, for a different opinion with respect to patient HY). However, a recent 
study by Cohen and Dehaene (1991) complicates the picture to some extent. 
Cohen and Dehaene studied a French patient, YM, a 58-year-old man suffering 
from a left temporal-parietal tumor. In reading aloud arabic numerals, YM made 
substitution errors, such as 3 read as "neuf" (nine). According to the McCloskey 
et al. (1986) model, such errors could result from deficits in arabic numeral 
comprehension and/or verbal numeral production - that is, impairments in 
translating arabic stimulus numerals into semantic representations of numbers, 
and/or in translating semantic representations into sequences of phonological 
number-word representations. 

Results from other tasks suggested an impairment in verbal numeral produc- 
tion. Written addition problems involving 1- and 2-digit numbers were presented 
with correct or incorrect answers. Although YM erred in reading aloud 15 of the 
25 problems, he made only 3 errors in indicating whether the answer to a problem 
was correct or incorrect. The reasonably good verification performance implies 
that~the reading errors were not entirely due to errors in comprehension of the 
arabic numerals in the problems, and hence suggests a deficit in production of 
spoken verbal numerals. 

However, other findings are not readily interpretable in terms of a deficit in 
translating semantic representations of numbers into a sequence of phonological 
number-word representations. The incorrect digits in arabic transcriptions of 
YM's number-reading responses tended to be visually similar to the correspond- 
ing correct digits (e.g., stimulus 233, response 733). Further, when the digits in a 
stimulus number were arrayed in the standard left-to-right fashion, YM was much 
more likely to err on the leftmost digit than on subsequent digits. However, when 
the digits were arranged vertically, error rate did not differ as a function of 
position. These results suggest a deficit at a level of representation involving 
spatially arrayed visual representations of digits. 
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Within the framework of the McCloskey et al. (1986) model the effects of 
visual/spatial factors suggest that in addition to a verbal numeral production 
deficit, YM also had a deficit in comprehension of arabic numerals (e.g., a 
relatively peripheral deficit affecting the translation of digits, especially the 
leftmost digit, into abstract quantity representations). Some findings from other 
tasks, although not definitive, are consistent with this interpretation. As men- 
tioned above, YM made some errors in verifying addition problems (3 of 25, or 
12%); further, when asked to produce written answers to addition problems, YM 
erred on 6 of 25 problems (24%). These errors, which are comparable in 
frequency to YM's errors in reading aloud 1- and 2-digit numbers (13% and 17% 
error rates, respectively), could reflect impairment in comprehension of arabic 
stimulus numbers (although a calculation deficit could also produce such errors). 7 

One result, however, argues against a deficit in arabic numeral comprehension: 
when presented with 220 pairs of 1- to 4-digit arabic numerals and asked to judge 
which number in each pair was larger, YM was 100% correct. (When asked to 
read aloud 88 of the pairs, YM made 38 errors, and six of these errors resulted in 
a reversal of the relative magnitudes of the two numbers.) 

From YM's pattern of performance across the various tasks, Cohen and 
Dehaene (1991) suggested that the McCloskey et al. (1986) model should be 
modified. Whereas the McCloskey et al. model assumes that verbal numeral 
production processes operate upon an abstract semantic representation of a 
number, Cohen and Dehaene argued that in reading arabic numerals aloud 
spatially arrayed digit representations are used as a basis for generating a syntactic 
frame for the to-be-produced verbal numeral. Then, for each digit that specifies 
the position-within-class of a ones, teens, or tens words in the numeral, the 
"identity" of the digit is retrieved by a digit identity retrieval process. For 
example, in reading aloud the arabic numeral 304, digit representations (3-0-4) 
would be used to generate a syntactic frame. The digit identity retrieval process 
would then insert the identities of the digits 3 and 4 into the syntactic frame. 
Finally, these digit identities would be used in combination with the number- 
lexical class representations (e.g., TENS) to retrieve the appropriate phonological 
number-word representations. Given these assumptions, Cohen and Dehaene 
(1991) argue, YM's deficit can be localized to the digit identity retrieval process. 

Although the Cohen and Dehaene (1991) arguments are interesting, two 
important aspects of their theoretical proposal are not clearly articulated. First, in 
discussing digit identity retrieval Cohen and Dehaene do not explain what they 
mean by digit "identities." Thus, it is unclear just what sort of representation the 
digit identity retrieval process is presumed to retrieve. Second, Cohen and 

7Results from another task suggest that a deficit in arabic numeral production was probably not 
responsible for the errors in producing written responses tO addition problems. 
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Dehaene do not indicate whether their model is intended to apply to verbal 
numeral production in general, or only to arabic-to-spoken-verbal transcoding. Is 
it assumed that any task requiring production of verbal numerals implicates the 
production process proposed for reading of Arabic numerals (i.e., a process that 
takes as its input a sequence of visual digit representations)? Or is the assumption 
instead that are there several (at least partially) distinct verbal numeral produc- 
tion processes, each of which operates upon a different form of input? For 
example, in producing spoken responses to questions like "How tall is the average 
English woman?", is an answer first generated in the form of an abstract semantic 
representation, then converted to a sequence of visual digit representations, and 
finally operated upon by the verbal numeral production process described by 
Cohen and Dehaene? Or is the initially generated abstract representation taken as 
input by a verbal numeral production process distinct from the process involved in 
reading aloud arabic numerals? 

In the absence of more explicit assumptions about the scope of the model, and 
the nature of digit identity representations, the Cohen and Dehaene proposal is 
difficult to evaluate with respect to theoretical motivation and empirical 
adequacy. For example, on the interpretation that YM's errors in reading aloud 
arabic numerals reflected a deficit in digit identity retrieval, what should we 
expect with regard to performance on other tasks? Should a digit identity retrieval 
deficit lead to impairment in judging which of two arabic numerals is larger, or in 
production of written verbal numerals from arabic stimuli, or so forth? These 
questions are difficult to answer, because there is no clear basis for assessing 
whether a task should require digit identity retrieval. 

At the empirical level, Cohen and Dehaene's (1991) arguments are also not as 
strong as they might be. Nearly all of the findings from patient YM can be 
accommodated within the framework of the McCloskey et al. (1986) model by 
assuming deficits in both arabic numeral comprehension and verbal numeral 
production. The only result raising difficulties for this interpretation is YM's 
perfect performance in the numerical comparison task (i.e., the task in which he 
judged which of two arabic numerals was larger), because this finding suggests 
intact comprehension of arabic numerals. However, the numerical comparison 
results, while certainly troublesome, are less than compelling. Although the 
interpretation based on the McCloskey et al. (1986) model predicts some errors in 
numerical comparison, this interpretation does not predict that numerical com- 
parison errors should have occurred as often as reading-aloud errors that reversed 
the magnitude of the numbers in a pair. From the perspective of the McCloskey 
et al. (1986) model, not all of the reading-aloud errors were due to an arabic 
numeral comprehension deficit; some of these errors reflected a deficit in verbal 
numeral production. Thus, although Cohen and Dehaene (1991) reported that 6 
of the errors YM made in reading aloud 88 of the numerical comparison stimuli 
reversed the relative magnitude of the stimuli, it does not follow from the 
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McCloskey et al. (1986) model that numerical comparison errors should have 
occurred at such a high rate. Given that no other evidence of intact arabic 
numeral comprehension was presented, the numerical comparison results do not 
provide a strong basis for excluding the possibility of an arabic numeral com- 
prehension deficit. This is especially true in light of the fact that YM's substantial 
error rates in arithmetic tasks not requiring spoken responses are consistent with 
such a deficit. 

The Cohen and Dehaene (1991) study raises at a more specific level the issues 
discussed in earlier sections concerning the functional architecture of numerical 
processing mechanisms, and the forms of representation implicated in various 
aspects of processing. Thus, the study highlights once again the centrality of these 
issues in current cognitive neuropsychological research on numerical processing. 

Facts, rules, and procedures in arithmetic 

The impaired performance of brain-damaged patients has also been used to 
explore the internal structure of processing mechanisms underlying basic arith- 
metic performance. Over the past several years my colleagues and I have carried 
out a number of single-case studies involving patients with deficits in arithmetic 
fact retrieval (McCloskey, Aliminosa, & Sokol, 1991; Sokol et al., 1991; Sokol & 
McCloskey, 1991; Sokol, McCloskey, & Cohen, 1989). In this section I survey 
some of the major findings from 10 patients tested extensively in single- and 
multi-digit multiplication tasks. 

Single-digit multiplication 

For reasons that will become apparent, I will distinguish three subsets of 
single-digit multiplication problems: (1) O's problems (i.e., 0 x 0 through 0 x 9, 
and 1 x 0 through 9 x 0); (2) l 's problems (i.e., 1 x 1 through 1 × 9, 2 × 1 through 
9 x 1); and (3) 2-9's problems (i.e., 2 x 2 through 9 × 9). 

Arithmetic facts 

Considering first the 2-9's problems, 7 of the 10 patients we have tested 
showed clear impairment on these problems, and for all 7 patients the impairment 
was non-uniform across problems. That is, for each patient the error rate was 
much higher for some problems than for others. This phenomenon is illustrated in 
Table 7, which presents the error rates for individual multiplication problems for 
patient PS. The table shows, for example, that PS's error rate was greater than 
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T a b l e  7. Percentage o f  errors for patient PS on 
problems 

single-digit multiplication 

Second Operand 
First 
Operand 0 1 2 3 4 5 6 7 8 9 

0 0 44 44 48 39 39 48 39 39 35 
1 39 13 0 4 0 0 0 4 0 0 
2 39 0 0 0 0 0 9 4 0 4 
3 39 0 0 30 4 0 4 0 13 9 
4 39 0 0 4 52 4 9 4 17 74 
5 44 4 0 0 0 4 9 17 26 30 
6 48 0 0 4 4 26 0 30 13 9 
7 39 4 0 0 13 9 52 78 52 83 
8 39 0 0 9 17 22 9 26 61 0 
9 44 0 0 17 83 22 26 91 0 100 

80% f o r 9 x 4 , 9 x 7 ,  a n d 9 × 9 ,  bu t  less than  30% f o r 9 x 2 , 9 x 3 , 9 × 5 , 9 × 6 ,  
and  9 x 8. 8 

T h e  n o n - u n i f o r m i t y  of  i m p a i r m e n t  has  impl ica t ions  for  m o d e l s  of  a r i t hme t i c  

fact  r e t r i eva l .  In  pa r t i cu la r ,  this p h e n o m e n o n  poses  difficulties for  m o d e l s  assum- 

ing ex tens ive  ove r l ap  a m o n g  facts in e l e m e n t s  of  the  in te rna l  r e p r e s e n t a t i o n s ,  bu t  

m a y  r ead i ly  be  a c c o m m o d a t e d  by  m o d e l s  pos tu l a t ing  a la rge ly  d is t inct  r e p r e s e n t a -  

t ion  for  each  fact  ( M c C l o s k e y ,  H a r l e y ,  & Sokol ,  1991). 

Table-search models. T a b l e - s e a r c h  m o d e l s  ho ld  tha t  a r i t hme t i c  facts a re  s t o r ed  

in a t ab l e - l i ke  s t ruc ture ,  as i l lus t ra ted  in F igure  4 (e .g . ,  A s h c r a f t  & Ba t tag l i a ,  

1978; W i d a m a n ,  G e a r y ,  C o r m i e r ,  & Li t t le ,  1989). In  a typical  m o d e l  of  this  sor t  

( e .g . ,  A s h c r a f t  & Ba t tag l i a ,  1978) each  row and co lumn of  the  in te rna l  t ab le  is 

h e a d e d  by  a node  c o r r e s p o n d i n g  to the  a p p r o p r i a t e  o p e r a n d ,  and  the  answer  to a 

p r o b l e m  is s t o r e d  at  the  in te r sec t ion  of  the  a p p r o p r i a t e  row and  co lumn.  W h e n  a 

p r o b l e m  is p r e s e n t e d ,  the  c o r r e s p o n d i n g  row and  co lumn o p e r a n d  nodes  are  

ac t iva t ed .  A c t i v a t i o n  then  sp reads  across  the  row and down the  co lumn via 

assoc ia t ive  l inks b e t w e e n  a d j a c e n t  nodes ,  unti l  an in te r sec t ion  occurs  at  the  

l oca t i on  w h e r e  the  cor rec t  answer  is s to red ,  as i l lus t ra ted  in F igure  4 for  the  

p r o b l e m  8 x 9. 

In  t a b l e - s e a r c h  m o d e l s  mos t  r e p r e s e n t a t i o n a l  e l emen t s  and  re t r i eva l  o p e r a t i o n s  

a re  s h a r e d  across  severa l  s t o r ed  facts.  F o r  e x a m p l e ,  the  l ink f rom the  24 node  to  

t he  32 n o d e  in the  8's row of  F igure  4 mus t  be  t r ave r sed  in re t r i ev ing  the  answer  

8Although impairment was non-uniform across problems for each patient, severely impaired and 
relatively intact problems were not scattered randomly over the set of 2-9's problems. In general, 
problems with large operands (e.g., 9 x 7) showed greater impairment than problems with small 
operands (e.g., 2 × 3). However, for all of the patients there were notable exceptions to this problem 
size effect. For example, PS made no errors on 9 x 8 or 8 x 9, but presented with a 52% error rate on 
4 x 4. See McCloskey et al. (1991) for further discussion of problem size effects and their implications. 



Cognitive mechanisms in numerical processing 147 

Figure 4. 

2 3 4 S 6 7 8 9 

2 

Schematic depktion of a table-like representation for multiplication facts, and a table-search 
retrieval process. 

to  8 x 4, 8 x 5, 8 x 6, 8 × 7, 8 x 8, and  8 x 9. This  f ea tu re  of  the  m o d e l s  c rea tes  

p r o b l e m s  in a t t e m p t i n g  to  i n t e rp re t  i r r egu la r  pa t t e rn s  of  i m p a i r m e n t .  

T a b l e - s e a r c h  m o d e l s  w o u l d  p r e s u m a b l y  i n t e rp re t  a r i t hme t i c  fact  r e t r i eva l  

def ici ts  by  assuming  tha t  b ra in  d a m a g e  d i s rup t ed  the  tab le  search  p rocess ,  p e r h a p s  

by  d e s t r o y i n g  o r  w e a k e n i n g  associa t ive  l inks b e t w e e n  nodes  in the  tab le .  F o r  

e x a m p l e ,  fa i lu re  to  r e t r i eve  the  answer  to  8 x 6 might  occur  when  one  o r  m o r e  of  

t he  l inks  in the  8 's  row or  6 's  co lumn cou ld  no t  be  t r ave r sed .  H o w e v e r ,  d a m a g e  

tha t  w o u l d  resu l t  in the  p a t t e r n s  of  n o n - u n i f o r m  i m p a i r m e n t  o b s e r v e d  for  our  

p a t i e n t s  c anno t  r ead i ly  be  specif ied wi thin  the  t ab l e - sea rch  f r a m e w o r k .  F o r  

e x a m p l e ,  t h r e e  pa t i en t s  ( inc lud ing  PS)  had  cons ide rab ly  h igher  e r r o r  ra tes  for  

8 × 8 t h a n  for  8 × 9 o r  9 × 8. The  i m p a i r m e n t  on  8 × 8 suggests  tha t  the  search  

across  the  8's row a n d / o r  the  search  down  the  8's co lumn  were  subs tan t i a l ly  

d i s rup t ed .  H o w ,  t hen ,  were  the  pa t i en t s  cons is ten t ly  ab le  to r e t r i eve  the  answers  

to  8 × 9 and  9 × 8? If  the  search  across  the  8's row were  d i s rup t e d ,  t hen  

p e r f o r m a n c e  shou ld  have  been  i m p a i r e d  on 8 × 9; and  if the  sea rch  d o w n  the  8 's  

c o l u m n  were  d i s r u p t e d ,  t hen  9 x 8 shou ld  have  shown i m p a i r m e n t .  9 

9To interpret departures from table-search predictions in the reaction time data from normal 
subjects, Miller et al. (1984) proposed a distinction between locating the appropriate cell in the table 
(through the table-search process), and accessing the answer stored at that cell. Given this distinction, 
irregular impairment across problems (or indeed any conceivable pattern) could be interpreted simply 
by assuming that the table-search process was intact, but that access to stored answers was disrupted 
for problems showing impairment. For example, PS's performance on 8 × 9, 9 x 8, and 8 x 8 could be 
interpreted by assuming that whereas the processes of searching along the 8's row and the 8's column 
were intact (allowing good performance for 8 × 9 and 9 × 8), performance on 8 x 8 was impaired due 
to difficulty in accessing the answer stored in the [8,8] cell of the matrix. However, as Siegler (1988) 
has pointed out, the postulation of an access process independent of the table-search process renders 
vacuous the assumption that retrieval involves a search through a table-like structure, because "any 
aspect of performance not attributable to the hypothesized [table-like] organization can be attributed 
to differences in accessibility" (Siegler, 1988, p. 272). 
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Models with distinct fact representations. Whereas non-uniform impairment 
across problems cannot readily be accommodated by table-search models, this 
phenomenon is consistent with models holding that each fact has a representation 
largely or entirely distinct from the representations for other facts (e.g., Ashcraft, 
1987; Campbell & Graham, 1985; Siegler, 1988; Siegler & Shrager, 1984). Figure 
5 illustrates Ashcraft's (1987) network retrieval model. Like the table-search 
models, the network retrieval model assumes that nodes representing problem 
operands are connected in a memory network to nodes representing answers. 
However, whereas table-search models assume that operand nodes are connected 
only indirectly to most answer nodes (see Figure 4), the network retrieval model 
assumes that each operand node is connected directly to the answer node for each 
problem involving that operand (see Figure 5). For example, the first-operand 6 
node is connected directly to the answer nodes for the problems 6 x 2, 6 x 3, 
6 x 4, and so forth. Thus, in contrast to table-search models, Ashcraft's (1987) 
network retrieval model assumes that each problem has its own operand-answer 
associations. 

When a problem is presented, the corresponding operand nodes are activated, 
and activation spreads to the associated answer nodes. The most highly activated 

Figure 5. 

@ 

A representative portion of the arithmetic fact network postulated by Ashcraft's (1987) 
network retrieval model. The nodes in the upper left of the figure represent the first operand 
in a problem, and the nodes in the lower left represent the second operand, and the nodes on 
the right represent answers. 
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answer node is chosen as the response, if this node's activation exceeds a 
threshold level. Thus, presentation of 6 x 3 activates the first-operand 6 node and 
the second-operand 3 node, and activation spreads from these nodes to the 
answer nodes for all 6 x N and N × 3 problems. However, the node representing 
the correct answer 18 will be most highly activated, because it receives activation 
from both of the activated operand nodes. 

Within the context of the network retrieval model or related models (e.g., 
Campbell & Graham, 1985; Siegler & Shrager, 1984) deficits in arithmetic fact 
retrieval might be interpreted by assuming that brain damage may weaken 
associations in the memory network. Suppose in particular that operand-answer 
associations are weakened in a random scattershot fashion, such that some 
associations are weakened to a greater extent than others. Because each problem 
has its own operand-answer associations, weakening of associations for a problem 
should impair performance only on that problem. As a consequence, random 
weakening of associations should lead to irregular patterns of impairment. For 
example, the finding that PS was severely impaired on 8 x 8 yet performed 
without error on 8 x 9 may be interpreted by assuming that one or more of the 
operand-answer associations for the problem 8 x 8 were disrupted, but that the 
associations for 8 x 9 were left largely intact. 

Arithmetic rules 

For 2-9's multiplication problems impairment was non-uniform across prob- 
lems, suggesting that individual fact representations (e.g., 6 x 8 = 48, 6 x 9 = 54) 
underlie performance on these problems. However, the results for the single-digit 
O's problems suggest a different conclusion for these problems. 

For the problem 0 x 0, none of the patients made any errors. Hence, I will 
focus on the 18 problems involving 0 and a non-zero operand (i.e., 0 x 1 through 
0 × 9, and 1 × 0 through 9 × 0). For 7 of the 9 patients tested extensively on 
single-digit O's problems, performance was uniform across these 18 problems. 
(The two exceptions will be discussed below.) Three patients showed uniformly 
low error rates, whereas four showed uniformly high error rates. Three of these 
latter four patients were in fact 100% incorrect on all 18 problems. For all of the 
patients showing impairment on O's problems, errors consistently took the form 
N × 0 = N ( e . g . , 0 x 6 = 6 , 3 × 0 = 3 ) .  

These results suggest that O's problems are solved by reference to a general 
rule (i.e., 0 times any number is 0). On this account, performance was uniform 
across O's problems because a single rule mediates performance on all of the 
problems. (See McCloskey et al., 1991, for more detailed discussion.) 

Uniform spontaneous improvement. An interesting phenomenon exhibited by 
patient PS offers additional support for the zero-rule hypothesis. PS was tested on 
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23 blocks of single-digit multiplication problems. In blocks 1-9 she erred on 98% 
of the O's problems; in blocks 10-23, however, she was 95% correct. The 
performance shift was quite abrupt: PS was incorrect on all O's problems in block 
9, and correct on all of these problems in block 10. This pattern of uniform 
impairment followed by sudden uniform recovery may be interpreted as follows: 
In blocks 1-9 PS was unable to access the zero rule, and consequently showed 
impairment on all O's problems. However, she regained access to the rule between 
blocks 9 and 10, with the result that all problems showed improvement. (See 
Sokol et al., 1991, for discussion of possible reasons for the sudden recovery of 
the rule.) 

Although it has been widely assumed that O's multiplication problems are 
solved by reference to a rule (e.g., Ashcraft, 1983, 1987; Ashcraft, Fierman, & 
Bartolotta, 1984; Baroody, 1983, 1984; Campbell & Graham, 1985; Miller et al., 
1984; Parkman, 1972; Stazyk, Ashcraft, & Hamann, 1982), studies of normal 
arithmetic fact retrieval have not generated clear support for this assumption. In 
contrast, the results from brain-damaged patients provide strong evidence in favor 
of the zero-rule hypothesis. 

One zero-rule or two? As noted earlier, two patients did not show uniform 
performance across the O's problems. For these patients (FW and JB) per- 
formance was uniform across the 0 x N problems (e.g., 0 x 3), and across the 
N × 0 problems (e.g., 3 x 0), but differed between these two subsets of problems. 
FW presented with a uniformly high error rate on N x 0 problems, and a 
uniformly low error rate on 0 × N problems. For patient JB the opposite pattern 
was observed: a high error rate for each 0 x N problem, and a lower error rate for 
each N x 0 problem. This double dissociation suggests that for at least some 
individuals there may be two separate multiplication-by-zero rules, one applying 
to 0 × N problems, and the other applying to N × 0 problems. 

Other arithmetic rules? Given the results for the O's multiplication problems, 
one may ask whether other subsets of arithmetic problems may also be solved by 
rule. Some evidence from our patients suggests rule-based solution for several 
problem subsets, including l's multiplication problems and O's addition problems 
(McCloskey et al., 1991). However, the evidence is not as strong as for the 
multiplication-by-zero rule. 

Multi-digit multiplication 

For the most part, fact-retrieval impairments evident in single-digit multiplication 
were also apparent on multi-digit problems, That is, the patients made the same 
types of fact retrieval errors in the multi-digit task as in the single-digit task. For 
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O's, however, dramatic dissociations were apparent between single- and multi- 
digit multiplication tasks. 

All six patients showing impairment on single-digit O's problems showed 
excellent performance in processing O's in multi-digit multiplication problems. For 
example, patient GE was 0% correct on single-digit O's problems, but 93% 
correct in processing O's in multi-digit problems (Sokol et al., 1991). Figure 6 
presents two examples of GE's performance on O's in multi-digit problems. 

Special-case procedures.  The O's dissociations may be interpreted in terms of 
special-case procedures for processing O's in multi-digit problems. By special-case 
procedure I mean an alternate "path" in the general multi-digit multiplication 
algorithm, the execution of which bypasses the solving of individual O's problems. 
Consider the examples of patient GE's performance in Figure 6. For the problem 
in Figure 6A, a person applying the general multiplication procedure would first 
multiply 0 x 8, then 0 x 1, then 0 x 6 (by retrieving the zero-rule), in each case 
writing the product 0 in the appropriate column. GE, in contrast, wrote a single 0 
below the rightmost column of the problem, stating that " . . .  this zero stands for 
all of the top line." He then proceeded to the next digit in the bottom number 
(i.e., 9), performing three fact retrievals (9 × 8, 9 x 1, 9 x 6), and writing answers 
on the same line as the 0. Thus, GE employed a special-case procedure that 
bypassed three individual multiplication-by-0 operations (0 x 8, 0 × 1, 0 x 6). GE 
applied this procedure to O's in any position within the bottom operand, as 
illustrated in Figure 6B. Upon encountering the 0 in 307, he simply wrote a 0 
(stating "zero covers everything up there"), and proceeded to the next digit in the 
bottom number. 

Figure 6B also illustrates a second special-case procedure. Applying the 
general multiplication procedure to this problem would involve first multiplying 7 
by 4, writing the ones digit of the answer (8) and carrying the tens digit (2). Then, 
7 would be multiplied by 0, the carry of 2 would be added to the obtained answer 
of 0, and the resulting 2 would be written. Thus, the 8 would be written first, and 
the 2 would be written second. However, after GE retrieved 28 as the product of 
7 and 4, he wrote "2" and then "8" (from left to right), stating that he could put 

9O4 
618 x 307 

Figure 6. 

A B 

Examples of GE's performance on multi-digit multiplication problems involving O's, 
illustrating special-case procedures. 
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the whole answer down because the next digit in the top number was 0. He then 
proceeded to multiply 7 by 9. Similarly, in multiplying 904 by 3, he multiplied 3 
by 4, writing "1" and then "2," and then multiplied 3 by 9. 

On the special-case procedures account, the normal calculation system includes 
both the zero-rule N x 0 -- 0 (which is used in solving single-digit 0's problems and 
could be used to solve O's problems embedded in multi-digit problems), and 
special-case procedures that bypass the solving of individual O's problems in 
multi-digit problems. Given this assumption, O's dissociations of the sort observed 
in our patients would be expected to occur in situations where the zero-rule was 
inaccessible (leading to errors on single-digit problems), but the special-case 
procedures were intact. 

It is interesting to note that most of the patients presenting with the dissocia- 
tion between O's in single- and multi-digit problems showed little if any awareness 
of the discrepancy between their single- and multi-digit O's responses. In the same 
sessions in which they consistently applied special-case procedures based upon the 
fact that anything times 0 is 0, they also made, with no apparent discomfort, 
N x 0 = N responses to single-digit O's problems. This result seems to suggest that 
the special-case procedures were applied without awareness of their conceptual 
basis. 

FUTURE DIRECTIONS 

The issues I have discussed in this article will no doubt continue to occupy 
researchers studying normal and impaired numerical processing for many years to 
come. However, several additional issues are also worthy of attention. 

Relation of  numerical and non-numerical processing mechanisms 

One issue that has not been adequately addressed in recent work concerns the 
relationship between mechanisms for numerical and non-numerical processing. A 
central question in this realm concerns whether numeral processing mechanisms 
are incorporated within, or are separate from, the cognitive language-processing 
system. Presumably, lexical processing of verbal numerals (i.e., comprehension 
and production of individual number words) implicates general lexical processing 
mechanisms. For example, in production of spoken verbal numerals phonological 
number-word representations are presumably retrieved from a general phonologi- 
cal output lexicon (although the number words may comprise a functional class 
within that lexicon). In the case of syntactic processing of verbal numerals, and 
processing of arabic numerals in general, the situation is perhaps less clear. The 
relationship between numerical and language processing mechanisms has been 
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widely discussed in the dyscalculia literature (e.g., Benson & Denckla, 1969; 
Collignon, Leclercq, & Mahy, 1977; Hecaen, Angelergues, & Houillier, 1961), 
but no clear conclusions have emerged. 

Another important issue concerns the role of other general cognitive capacities 
(e.g., working memory, spatial processing abilities) in arithmetic and other 
numerical processing. For example, it has often been assumed that spatial 
processing deficits underlie many forms of calculation disturbance (e.g., Hecaen 
et al., 1961; Hartje, 1987; Luria, 1966). However, the nature of the spatial 
processing mechanisms presumed to be implicated in calculation, and the specific 
forms of calculation impairment expected to result from their disruption, have not 
been clearly specified. (For further discussion, see McCloskey et al., 1985.) 

Neural instantiation of cognitive numerical processing mechanisms 

Like relationships between numerical and non-numerical processing mechanisms, 
relationships between forms of dyscalculia and loci of brain lesions have been 
extensively discussed (see Kahn & Whitaker, 1991, for a recent review). Again, 
however, no clear conclusions have emerged. Although several researchers have 
put forth hypotheses concerning lesion-deficit relationships, these hypotheses are 
rather non-specific, and not in close agreement with one another (e.g., Boiler & 
Grafman, 1983; Cohn, 1961; Collignon et al., 1977; Levin & Spiers, 1985; Spiers, 
1987). 

The reasons for this state of affairs are not entirely clear. One possibility is that 
cognitive mechanisms implicated in numerical processing are not precisely local- 
ized in the brain. However, another possibility is that the failure to establish clear 
deficit-lesion relationships reflects the fact that most attempts to establish such 
relationships have relied upon rather vague and general descriptions of patients' 
deficits, and not the sorts of detailed, theoretically-motivated characterizations I 
have attempted to illustrate in this article. 

Developmental dyscalculia 

Dyscalculia occurs not only as an acquired disorder, but also as a developmental 
deficit (e.g., Cohn, 1968, 1971; Guttman, 1937; Kosc, 1974; Slade & Russell, 
1971; Strang & Rourke, 1985). Systematic analyses of cases of developmental 
dyscalculia in light of what has been learned about normal numerical processing 
and acquired dyscalculia could perhaps shed light on the nature of the de- 
velopmental deficits, as well as suggesting strategies for treatment. Further, the 
study of developmental dyscalculia, like the study of acquired dyscalculia, may 
contribute to understanding of normal numerical processing. Some preliminary 
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s t eps  in th is  d i r e c t i o n  h a v e  b e e n  t a k e n  (e .g . ,  T e m p l e ,  1989, 1991),  b u t  m o r e  

c o n c e r t e d  e f f o r t  is n e e d e d .  
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